ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09119
  4. Cited By
FADER: Fast Adversarial Example Rejection

FADER: Fast Adversarial Example Rejection

18 October 2020
Francesco Crecchi
Marco Melis
Angelo Sotgiu
D. Bacciu
Battista Biggio
    AAML
ArXivPDFHTML

Papers citing "FADER: Fast Adversarial Example Rejection"

34 / 34 papers shown
Title
Adversarial Detection by Approximation of Ensemble Boundary
Adversarial Detection by Approximation of Ensemble Boundary
T. Windeatt
AAML
84
0
0
18 Nov 2022
Do Gradient-based Explanations Tell Anything About Adversarial
  Robustness to Android Malware?
Do Gradient-based Explanations Tell Anything About Adversarial Robustness to Android Malware?
Marco Melis
Michele Scalas
Ambra Demontis
Davide Maiorca
Battista Biggio
Giorgio Giacinto
Fabio Roli
AAML
FAtt
36
28
0
04 May 2020
Deep Neural Rejection against Adversarial Examples
Deep Neural Rejection against Adversarial Examples
Angelo Sotgiu
Ambra Demontis
Marco Melis
Battista Biggio
Giorgio Fumera
Xiaoyi Feng
Fabio Roli
AAML
28
68
0
01 Oct 2019
Deep-RBF Networks Revisited: Robust Classification with Rejection
Deep-RBF Networks Revisited: Robust Classification with Rejection
P. Zadeh
Reshad Hosseini
S. Sra
AAML
OOD
28
28
0
07 Dec 2018
Neural Networks with Structural Resistance to Adversarial Attacks
Neural Networks with Structural Resistance to Adversarial Attacks
Luca de Alfaro
AAML
22
5
0
25 Sep 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using
  Generative Models
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
66
1,172
0
17 May 2018
Fortified Networks: Improving the Robustness of Deep Networks by
  Modeling the Manifold of Hidden Representations
Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations
Alex Lamb
Jonathan Binas
Anirudh Goyal
Dmitriy Serdyuk
Sandeep Subramanian
Ioannis Mitliagkas
Yoshua Bengio
OOD
61
43
0
07 Apr 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
  Deep Learning
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
81
505
0
13 Mar 2018
Explaining Black-box Android Malware Detection
Explaining Black-box Android Malware Detection
Marco Melis
Davide Maiorca
Battista Biggio
Giorgio Giacinto
Fabio Roli
AAML
FAtt
14
43
0
09 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
156
3,171
0
01 Feb 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
85
1,401
0
08 Dec 2017
Security Evaluation of Pattern Classifiers under Attack
Security Evaluation of Pattern Classifiers under Attack
Battista Biggio
Giorgio Fumera
Fabio Roli
AAML
37
442
0
02 Sep 2017
Is Deep Learning Safe for Robot Vision? Adversarial Examples against the
  iCub Humanoid
Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid
Marco Melis
Ambra Demontis
Battista Biggio
Gavin Brown
Giorgio Fumera
Fabio Roli
AAML
30
98
0
23 Aug 2017
Evasion Attacks against Machine Learning at Test Time
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
93
2,140
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
211
11,962
0
19 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
422
129,831
0
12 Jun 2017
MagNet: a Two-Pronged Defense against Adversarial Examples
MagNet: a Two-Pronged Defense against Adversarial Examples
Dongyu Meng
Hao Chen
AAML
28
1,205
0
25 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
101
1,851
0
20 May 2017
Yes, Machine Learning Can Be More Secure! A Case Study on Android
  Malware Detection
Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection
Ambra Demontis
Marco Melis
Battista Biggio
Davide Maiorca
Dan Arp
Konrad Rieck
Igino Corona
Giorgio Giacinto
Fabio Roli
AAML
31
284
0
28 Apr 2017
SafetyNet: Detecting and Rejecting Adversarial Examples Robustly
SafetyNet: Detecting and Rejecting Adversarial Examples Robustly
Jiajun Lu
Theerasit Issaranon
David A. Forsyth
GAN
62
380
0
01 Apr 2017
Detecting Adversarial Samples from Artifacts
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
71
892
0
01 Mar 2017
On Detecting Adversarial Perturbations
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
49
947
0
14 Feb 2017
Randomized Prediction Games for Adversarial Machine Learning
Randomized Prediction Games for Adversarial Machine Learning
Samuel Rota Buló
Battista Biggio
I. Pillai
Marcello Pelillo
Fabio Roli
AAML
20
61
0
03 Sep 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
157
8,497
0
16 Aug 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks
  using Adversarial Samples
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
78
1,735
0
24 May 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
46
4,153
0
25 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Towards Open Set Deep Networks
Towards Open Set Deep Networks
Abhijit Bendale
Terrance Boult
BDL
EDL
87
1,412
0
19 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
45
3,061
0
14 Nov 2015
Evasion and Hardening of Tree Ensemble Classifiers
Evasion and Hardening of Tree Ensemble Classifiers
Alex Kantchelian
J. D. Tygar
A. Joseph
AAML
100
206
0
25 Sep 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
158
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
159
14,831
1
21 Dec 2013
Poisoning Attacks against Support Vector Machines
Poisoning Attacks against Support Vector Machines
Battista Biggio
B. Nelson
Pavel Laskov
AAML
80
1,580
0
27 Jun 2012
A tutorial on conformal prediction
A tutorial on conformal prediction
Glenn Shafer
V. Vovk
210
1,122
0
21 Jun 2007
1