ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08895
  4. Cited By
Fourier Neural Operator for Parametric Partial Differential Equations
v1v2v3 (latest)

Fourier Neural Operator for Parametric Partial Differential Equations

18 October 2020
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Fourier Neural Operator for Parametric Partial Differential Equations"

50 / 1,350 papers shown
Title
Mitigating spectral bias for the multiscale operator learning
Mitigating spectral bias for the multiscale operator learning
Xinliang Liu
Bo Xu
Shuhao Cao
Lei Zhang
AI4CE
122
31
0
19 Oct 2022
Catch-22s of reservoir computing
Catch-22s of reservoir computing
Yuanzhao Zhang
Sean P. Cornelius
91
13
0
18 Oct 2022
Flipped Classroom: Effective Teaching for Time Series Forecasting
Flipped Classroom: Effective Teaching for Time Series Forecasting
P. Teutsch
Patrick Mäder
AI4TS
67
8
0
17 Oct 2022
A Kernel Approach for PDE Discovery and Operator Learning
A Kernel Approach for PDE Discovery and Operator Learning
D. Long
Nicole Mrvaljević
Shandian Zhe
Bamdad Hosseini
83
7
0
14 Oct 2022
PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
M. Takamoto
T. Praditia
Raphael Leiteritz
Dan MacKinlay
Francesco Alesiani
Dirk Pflüger
Mathias Niepert
AI4CE
116
237
0
13 Oct 2022
FCT-GAN: Enhancing Table Synthesis via Fourier Transform
FCT-GAN: Enhancing Table Synthesis via Fourier Transform
Zilong Zhao
Robert Birke
L. Chen
117
7
0
12 Oct 2022
Self-Validated Physics-Embedding Network: A General Framework for
  Inverse Modelling
Self-Validated Physics-Embedding Network: A General Framework for Inverse Modelling
Ruiyuan Kang
D. Kyritsis
P. Liatsis
AI4CEPINN
75
5
0
12 Oct 2022
Guaranteed Conservation of Momentum for Learning Particle-based Fluid
  Dynamics
Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics
L. Prantl
Benjamin Ummenhofer
V. Koltun
Nils Thuerey
AI4CEPINN
73
32
0
12 Oct 2022
A composable machine-learning approach for steady-state simulations on
  high-resolution grids
A composable machine-learning approach for steady-state simulations on high-resolution grids
Rishikesh Ranade
C. Hill
Lalit Ghule
Jay Pathak
AI4CE
80
8
0
11 Oct 2022
MAgNet: Mesh Agnostic Neural PDE Solver
MAgNet: Mesh Agnostic Neural PDE Solver
Oussama Boussif
D. Assouline
L. Benabbou
Yoshua Bengio
AI4CE
217
30
0
11 Oct 2022
Edge-Varying Fourier Graph Networks for Multivariate Time Series
  Forecasting
Edge-Varying Fourier Graph Networks for Multivariate Time Series Forecasting
Kun Yi
Qi Zhang
Liang Hu
Hui He
Ning An
LongBing Cao
ZhenDong Niu
AI4TS
123
3
0
06 Oct 2022
Residual-based error correction for neural operator accelerated
  infinite-dimensional Bayesian inverse problems
Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems
Lianghao Cao
Thomas O'Leary-Roseberry
Prashant K. Jha
J. Oden
Omar Ghattas
69
26
0
06 Oct 2022
Nonlinear Reconstruction for Operator Learning of PDEs with
  Discontinuities
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
132
25
0
03 Oct 2022
Towards Learned Simulators for Cell Migration
Towards Learned Simulators for Cell Migration
Koen Minartz
Y. Poels
Vlado Menkovski
49
1
0
02 Oct 2022
Solving Coupled Differential Equation Groups Using PINO-CDE
Solving Coupled Differential Equation Groups Using PINO-CDE
Wenhao Ding
Qing He
Hanghang Tong
Qingjing Wang
Ping Wang
OODAI4CE
52
4
0
01 Oct 2022
Implicit Neural Spatial Representations for Time-dependent PDEs
Implicit Neural Spatial Representations for Time-dependent PDEs
Honglin Chen
Rundi Wu
E. Grinspun
Changxi Zheng
Julius Berner
AI4CE
105
37
0
30 Sep 2022
NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning
NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning
Ruiqi Ni
A. H. Qureshi
AI4CE
83
19
0
30 Sep 2022
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
137
136
0
30 Sep 2022
Neural Integral Equations
Neural Integral Equations
E. Zappala
Antonio H. O. Fonseca
J. O. Caro
David van Dijk
69
12
0
30 Sep 2022
Transformer Meets Boundary Value Inverse Problems
Transformer Meets Boundary Value Inverse Problems
Ruchi Guo
Shuhao Cao
Long Chen
MedIm
124
23
0
29 Sep 2022
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Yuan Yin
Matthieu Kirchmeyer
Jean-Yves Franceschi
A. Rakotomamonjy
Patrick Gallinari
AI4CE
94
53
0
29 Sep 2022
GeONet: a neural operator for learning the Wasserstein geodesic
GeONet: a neural operator for learning the Wasserstein geodesic
Andrew Gracyk
Xiaohui Chen
OT
87
2
0
28 Sep 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
111
13
0
28 Sep 2022
Phy-Taylor: Physics-Model-Based Deep Neural Networks
Phy-Taylor: Physics-Model-Based Deep Neural Networks
Y. Mao
L. Sha
Huajie Shao
Yuliang Gu
Qixin Wang
Tarek Abdelzaher
PINNAI4CE
101
1
0
27 Sep 2022
Variationally Mimetic Operator Networks
Variationally Mimetic Operator Networks
Dhruv V. Patel
Deep Ray
M. Abdelmalik
T. Hughes
Assad A. Oberai
114
24
0
26 Sep 2022
Fast-FNet: Accelerating Transformer Encoder Models via Efficient Fourier
  Layers
Fast-FNet: Accelerating Transformer Encoder Models via Efficient Fourier Layers
Nurullah Sevim
Ege Ozan Özyedek
Furkan Şahinuç
Aykut Koç
85
12
0
26 Sep 2022
Solving Seismic Wave Equations on Variable Velocity Models with Fourier
  Neural Operator
Solving Seismic Wave Equations on Variable Velocity Models with Fourier Neural Operator
Bian Li
Hanchen Wang
Shihang Feng
Xiu Yang
Youzuo Lin
121
36
0
25 Sep 2022
Differentiable physics-enabled closure modeling for Burgers' turbulence
Differentiable physics-enabled closure modeling for Burgers' turbulence
Varun Shankar
V. Puri
R. Balakrishnan
R. Maulik
V. Viswanathan
AI4CE
48
16
0
23 Sep 2022
DeepGraphONet: A Deep Graph Operator Network to Learn and Zero-shot
  Transfer the Dynamic Response of Networked Systems
DeepGraphONet: A Deep Graph Operator Network to Learn and Zero-shot Transfer the Dynamic Response of Networked Systems
Yixuan Sun
Christian Moya
Guang Lin
Meng Yue
GNN
119
9
0
21 Sep 2022
NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric
  Photonic Device Simulation
NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric Photonic Device Simulation
Jiaqi Gu
Zhengqi Gao
Chenghao Feng
Hanqing Zhu
Ray T. Chen
Duane S. Boning
David Z. Pan
93
19
0
19 Sep 2022
Self-supervised learning of hologram reconstruction using physics
  consistency
Self-supervised learning of hologram reconstruction using physics consistency
Luzhe Huang
Hanlong Chen
Tairan Liu
Aydogan Ozcan
DiffMSSL
68
46
0
17 Sep 2022
Bounding the Rademacher Complexity of Fourier neural operators
Bounding the Rademacher Complexity of Fourier neural operators
Taeyoung Kim
Myung-joo Kang
AI4CE
67
9
0
12 Sep 2022
Clifford Neural Layers for PDE Modeling
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
127
90
0
08 Sep 2022
Semi-supervised Invertible Neural Operators for Bayesian Inverse
  Problems
Semi-supervised Invertible Neural Operators for Bayesian Inverse Problems
Sebastian Kaltenbach
P. Perdikaris
P. Koutsourelakis
99
25
0
06 Sep 2022
MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural
  network for solving partial differential equations
MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural network for solving partial differential equations
Shihong Zhang
Chi Zhang
Bo Wang
AI4CE
41
3
0
06 Sep 2022
A variational neural network approach for glacier modelling with
  nonlinear rheology
A variational neural network approach for glacier modelling with nonlinear rheology
Tiangang Cui
Zhongjian Wang
Zhiwen Zhang
63
4
0
05 Sep 2022
Deep importance sampling using tensor trains with application to a
  priori and a posteriori rare event estimation
Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation
Tiangang Cui
S. Dolgov
Robert Scheichl
64
3
0
05 Sep 2022
Learning Differential Operators for Interpretable Time Series Modeling
Learning Differential Operators for Interpretable Time Series Modeling
Yingtao Luo
Chang Xu
Yang Liu
Weiqing Liu
Shun Zheng
Jiang Bian
AI4TS
98
8
0
03 Sep 2022
AutoWS-Bench-101: Benchmarking Automated Weak Supervision with 100
  Labels
AutoWS-Bench-101: Benchmarking Automated Weak Supervision with 100 Labels
Nicholas Roberts
Xintong Li
Tzu-Heng Huang
Dyah Adila
Spencer Schoenberg
Chengao Liu
Lauren Pick
Haotian Ma
Aws Albarghouthi
Frederic Sala
UQCV
117
9
0
30 Aug 2022
Data-driven soliton mappings for integrable fractional nonlinear wave
  equations via deep learning with Fourier neural operator
Data-driven soliton mappings for integrable fractional nonlinear wave equations via deep learning with Fourier neural operator
Ming Zhong
Zhenya Yan
36
17
0
29 Aug 2022
CAS4DL: Christoffel Adaptive Sampling for function approximation via
  Deep Learning
CAS4DL: Christoffel Adaptive Sampling for function approximation via Deep Learning
Ben Adcock
Juan M. Cardenas
N. Dexter
88
10
0
25 Aug 2022
AI-coupled HPC Workflows
AI-coupled HPC Workflows
S. Jha
V. Pascuzzi
Matteo Turilli
65
10
0
24 Aug 2022
Learning governing physics from output only measurements
Learning governing physics from output only measurements
Tapas Tripura
S. Chakraborty
59
1
0
11 Aug 2022
Multi-fidelity wavelet neural operator with application to uncertainty
  quantification
Multi-fidelity wavelet neural operator with application to uncertainty quantification
A. Thakur
Tapas Tripura
S. Chakraborty
76
13
0
11 Aug 2022
A Model-Constrained Tangent Slope Learning Approach for Dynamical
  Systems
A Model-Constrained Tangent Slope Learning Approach for Dynamical Systems
Hai V. Nguyen
T. Bui-Thanh
56
2
0
09 Aug 2022
Fully probabilistic deep models for forward and inverse problems in
  parametric PDEs
Fully probabilistic deep models for forward and inverse problems in parametric PDEs
Arnaud Vadeboncoeur
Ömer Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
F. Cirak
AI4CE
72
18
0
09 Aug 2022
On Fast Simulation of Dynamical System with Neural Vector Enhanced
  Numerical Solver
On Fast Simulation of Dynamical System with Neural Vector Enhanced Numerical Solver
Zhongzhan Huang
Senwei Liang
Hong Zhang
Haizhao Yang
Liang Lin
AI4CE
99
9
0
07 Aug 2022
Neural Basis Functions for Accelerating Solutions to High Mach Euler
  Equations
Neural Basis Functions for Accelerating Solutions to High Mach Euler Equations
D. Witman
Alexander New
Hicham Alkendry
Honest Mrema
39
4
0
02 Aug 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for
  Parametric PDEs
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCVBDL
62
13
0
02 Aug 2022
Physics-informed Deep Super-resolution for Spatiotemporal Data
Physics-informed Deep Super-resolution for Spatiotemporal Data
Pu Ren
Chengping Rao
Yang Liu
Zihan Ma
Qi Wang
Jianxin Wang
Hao Sun
114
13
0
02 Aug 2022
Previous
123...212223...252627
Next