ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08686
53
50
v1v2 (latest)

NEO: A Novel Expeditious Optimisation Algorithm for Reactive Motion Control of Manipulators

17 October 2020
Jesse Haviland
Peter Corke
ArXiv (abs)PDFHTML
Abstract

We present NEO, a fast and purely reactive motion controller for manipulators which can avoid static and dynamic obstacles while moving to the desired end-effector pose. Additionally, our controller maximises the manipulability of the robot during the trajectory, while avoiding joint position and velocity limits. NEO is wrapped into a strictly convex quadratic programme which, when considering obstacles, joint limits, and manipulability on a 7 degree-of-freedom robot, is generally solved in a few ms. While NEO is not intended to replace state-of-the-art motion planners, our experiments show that it is a viable alternative for scenes with moderate complexity while also being capable of reactive control. For more complex scenes, NEO is better suited as a reactive local controller, in conjunction with a global motion planner. We compare NEO to motion planners on a standard benchmark in simulation and additionally illustrate and verify its operation on a physical robot in a dynamic environment. We provide an open-source library which implements our controller.

View on arXiv
Comments on this paper