Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.08522
Cited By
Federated TON_IoT Windows Datasets for Evaluating AI-based Security Applications
4 October 2020
Nour Moustafa
Marwa Keshk
Essam Soliman Debie
Helge Janicke
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated TON_IoT Windows Datasets for Evaluating AI-based Security Applications"
6 / 6 papers shown
Title
Multi-stage Attack Detection and Prediction Using Graph Neural Networks: An IoT Feasibility Study
Hamdi Friji
Ioannis Mavromatis
Adrián Sánchez-Mompó
P. Carnelli
Alexis Olivereau
Aftab Khan
11
1
0
28 Apr 2024
Meta-Analysis and Systematic Review for Anomaly Network Intrusion Detection Systems: Detection Methods, Dataset, Validation Methodology, and Challenges
Z. K. Maseer
R. Yusof
Baidaa Al-Bander
Abdulgbar Saif
Qusay Kanaan Kadhim
14
14
0
05 Aug 2023
Few-shot Weakly-supervised Cybersecurity Anomaly Detection
Rahul Kale
V. Thing
24
9
0
15 Apr 2023
Active hypothesis testing in unknown environments using recurrent neural networks and model free reinforcement learning
George Stamatelis
N. Kalouptsidis
24
2
0
19 Mar 2023
A Hybrid Deep Learning Anomaly Detection Framework for Intrusion Detection
Rahul Kale
Zhi Lu
K. Fok
V. Thing
27
20
0
02 Dec 2022
A Deep Learning-based Penetration Testing Framework for Vulnerability Identification in Internet of Things Environments
Nickolaos Koroniotis
Nour Moustafa
B. Turnbull
F. Schiliro
Praveen Gauravaram
Helge Janicke
20
10
0
20 Sep 2021
1