Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.08236
Cited By
v1
v2
v3
v4
v5 (latest)
Quantile regression with deep ReLU Networks: Estimators and minimax rates
16 October 2020
Oscar Hernan Madrid Padilla
Wesley Tansey
Yanzhen Chen
Re-assign community
ArXiv (abs)
PDF
HTML
Github (8★)
Papers citing
"Quantile regression with deep ReLU Networks: Estimators and minimax rates"
12 / 12 papers shown
Title
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
187
0
0
10 Oct 2024
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
637
15
0
04 Oct 2023
Fantastic Generalization Measures and Where to Find Them
Yiding Jiang
Behnam Neyshabur
H. Mobahi
Dilip Krishnan
Samy Bengio
AI4CE
145
611
0
04 Dec 2019
The State of Sparsity in Deep Neural Networks
Trevor Gale
Erich Elsen
Sara Hooker
163
763
0
25 Feb 2019
Deep Neural Networks for Estimation and Inference
M. Farrell
Tengyuan Liang
S. Misra
BDL
176
255
0
26 Sep 2018
Beyond expectation: Deep joint mean and quantile regression for spatio-temporal problems
Filipe Rodrigues
Francisco Câmara Pereira
AI4TS
120
96
0
27 Aug 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
269
3,488
0
09 Mar 2018
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
238
816
0
22 Aug 2017
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks
Peter L. Bartlett
Nick Harvey
Christopher Liaw
Abbas Mehrabian
213
434
0
08 Mar 2017
Why Deep Neural Networks for Function Approximation?
Shiyu Liang
R. Srikant
138
385
0
13 Oct 2016
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
316
6,709
0
08 Jun 2015
Quantile and Probability Curves Without Crossing
Victor Chernozhukov
Iván Fernández-Val
Alfred Galichon
614
522
0
27 Apr 2007
1