Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.08065
Cited By
FPRaker: A Processing Element For Accelerating Neural Network Training
15 October 2020
Omar Mohamed Awad
Mostafa Mahmoud
Isak Edo Vivancos
Ali Hadi Zadeh
Ciaran Bannon
Anand Jayarajan
Gennady Pekhimenko
Andreas Moshovos
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FPRaker: A Processing Element For Accelerating Neural Network Training"
6 / 6 papers shown
Title
BitMoD: Bit-serial Mixture-of-Datatype LLM Acceleration
Yuzong Chen
Ahmed F. AbouElhamayed
Xilai Dai
Yang Wang
Marta Andronic
George A. Constantinides
Mohamed S. Abdelfattah
MQ
108
1
0
18 Nov 2024
Fine-tuning Language Models over Slow Networks using Activation Compression with Guarantees
Jue Wang
Binhang Yuan
Luka Rimanic
Yongjun He
Tri Dao
Beidi Chen
Christopher Ré
Ce Zhang
AI4CE
24
11
0
02 Jun 2022
Schrödinger's FP: Dynamic Adaptation of Floating-Point Containers for Deep Learning Training
Milovs Nikolić
Enrique Torres Sanchez
Jia-Hui Wang
Ali Hadi Zadeh
Mostafa Mahmoud
Ameer Abdelhadi
Kareem Ibrahim
Andreas Moshovos
MQ
33
1
0
28 Apr 2022
EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network Accelerators
Lois Orosa
Skanda Koppula
Yaman Umuroglu
Konstantinos Kanellopoulos
Juan Gómez Luna
Michaela Blott
K. Vissers
O. Mutlu
43
4
0
04 Feb 2022
Demystifying BERT: Implications for Accelerator Design
Suchita Pati
Shaizeen Aga
Nuwan Jayasena
Matthew D. Sinclair
LLMAG
38
17
0
14 Apr 2021
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,826
0
17 Sep 2019
1