Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.07388
Cited By
Interpretable Machine Learning with an Ensemble of Gradient Boosting Machines
14 October 2020
A. Konstantinov
Lev V. Utkin
FedML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretable Machine Learning with an Ensemble of Gradient Boosting Machines"
20 / 20 papers shown
Title
Principles and Practice of Explainable Machine Learning
Vaishak Belle
I. Papantonis
FaML
50
446
0
18 Sep 2020
Looking Deeper into Tabular LIME
Damien Garreau
U. V. Luxburg
FAtt
LMTD
155
30
0
25 Aug 2020
Closed-Form Expressions for Global and Local Interpretation of Tsetlin Machines with Applications to Explaining High-Dimensional Data
Christopher D. Blakely
Ole-Christoffer Granmo
37
16
0
27 Jul 2020
Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
Arun Das
P. Rad
XAI
152
602
0
16 Jun 2020
How Interpretable and Trustworthy are GAMs?
C. Chang
S. Tan
Benjamin J. Lengerich
Anna Goldenberg
R. Caruana
FAtt
103
79
0
11 Jun 2020
Local and Global Explanations of Agent Behavior: Integrating Strategy Summaries with Saliency Maps
Tobias Huber
Katharina Weitz
Elisabeth André
Ofra Amir
FAtt
51
67
0
18 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
95
377
0
30 Apr 2020
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
79
417
0
29 Apr 2020
SurvLIME: A method for explaining machine learning survival models
M. Kovalev
Lev V. Utkin
E. Kasimov
243
90
0
18 Mar 2020
GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
Zebin Yang
Aijun Zhang
Agus Sudjianto
FAtt
141
128
0
16 Mar 2020
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
Q. Huang
M. Yamada
Yuan Tian
Dinesh Singh
Dawei Yin
Yi-Ju Chang
FAtt
75
354
0
17 Jan 2020
Explaining the Explainer: A First Theoretical Analysis of LIME
Damien Garreau
U. V. Luxburg
FAtt
45
178
0
10 Jan 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
116
6,254
0
22 Oct 2019
ALIME: Autoencoder Based Approach for Local Interpretability
Sharath M. Shankaranarayana
D. Runje
FAtt
46
103
0
04 Sep 2019
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
181
1,170
0
19 Jun 2018
Multi-Layered Gradient Boosting Decision Trees
Ji Feng
Yang Yu
Zhi Zhou
AI4CE
176
120
0
31 May 2018
Global Model Interpretation via Recursive Partitioning
Chengliang Yang
Anand Rangarajan
Sanjay Ranka
FAtt
40
80
0
11 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,957
0
06 Feb 2018
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,519
0
11 Apr 2017
A Random Forest Guided Tour
Gérard Biau
Erwan Scornet
AI4TS
221
2,807
0
18 Nov 2015
1