ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.07249
  4. Cited By
Environment Inference for Invariant Learning

Environment Inference for Invariant Learning

14 October 2020
Elliot Creager
J. Jacobsen
R. Zemel
    OOD
ArXivPDFHTML

Papers citing "Environment Inference for Invariant Learning"

33 / 83 papers shown
Title
Repeated Environment Inference for Invariant Learning
Repeated Environment Inference for Invariant Learning
Aayush Mishra
Anqi Liu
BDL
OOD
19
0
0
26 Jul 2022
Equivariant and Invariant Grounding for Video Question Answering
Equivariant and Invariant Grounding for Video Question Answering
Yicong Li
Xiang Wang
Junbin Xiao
Tat-Seng Chua
14
25
0
26 Jul 2022
Invariant Feature Learning for Generalized Long-Tailed Classification
Invariant Feature Learning for Generalized Long-Tailed Classification
Kaihua Tang
Mingyuan Tao
Jiaxin Qi
Zhenguang Liu
Hanwang Zhang
VLM
21
52
0
19 Jul 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
51
71
0
19 Jul 2022
Contrastive Adapters for Foundation Model Group Robustness
Contrastive Adapters for Foundation Model Group Robustness
Michael Zhang
Christopher Ré
VLM
8
61
0
14 Jul 2022
Towards out of distribution generalization for problems in mechanics
Towards out of distribution generalization for problems in mechanics
Lingxiao Yuan
Harold S. Park
Emma Lejeune
OOD
AI4CE
30
16
0
29 Jun 2022
When Does Group Invariant Learning Survive Spurious Correlations?
When Does Group Invariant Learning Survive Spurious Correlations?
Yimeng Chen
Ruibin Xiong
Zhiming Ma
Yanyan Lan
OOD
CML
19
20
0
29 Jun 2022
Causal Discovery in Heterogeneous Environments Under the Sparse
  Mechanism Shift Hypothesis
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
41
48
0
04 Jun 2022
The Missing Invariance Principle Found -- the Reciprocal Twin of
  Invariant Risk Minimization
The Missing Invariance Principle Found -- the Reciprocal Twin of Invariant Risk Minimization
Dongsung Huh
A. Baidya
OOD
22
8
0
29 May 2022
Learning to Split for Automatic Bias Detection
Learning to Split for Automatic Bias Detection
Yujia Bao
Regina Barzilay
10
20
0
28 Apr 2022
Estimating Structural Disparities for Face Models
Estimating Structural Disparities for Face Models
Shervin Ardeshir
Cristina Segalin
Nathan Kallus
CVBM
22
5
0
13 Apr 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
34
314
0
06 Apr 2022
OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses
OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses
Robik Shrestha
Kushal Kafle
Christopher Kanan
CML
25
13
0
05 Apr 2022
Invariance Learning based on Label Hierarchy
Invariance Learning based on Label Hierarchy
S. Toyota
Kenji Fukumizu
OOD
19
1
0
29 Mar 2022
Robust Hybrid Learning With Expert Augmentation
Robust Hybrid Learning With Expert Augmentation
Antoine Wehenkel
Jens Behrmann
Hsiang Hsu
Guillermo Sapiro
Gilles Louppe and
J. Jacobsen
21
8
0
08 Feb 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
93
223
0
30 Jan 2022
Towards Group Robustness in the presence of Partial Group Labels
Towards Group Robustness in the presence of Partial Group Labels
Vishnu Suresh Lokhande
Kihyuk Sohn
Jinsung Yoon
Madeleine Udell
Chen-Yu Lee
Tomas Pfister
OOD
29
11
0
10 Jan 2022
BARACK: Partially Supervised Group Robustness With Guarantees
BARACK: Partially Supervised Group Robustness With Guarantees
N. Sohoni
Maziar Sanjabi
Nicolas Ballas
Aditya Grover
Shaoliang Nie
Hamed Firooz
Christopher Ré
OOD
12
24
0
31 Dec 2021
Disentanglement and Generalization Under Correlation Shifts
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
31
7
0
29 Dec 2021
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data
  via Generative Bias-transformation
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation
Yeonsung Jung
Hajin Shim
J. Yang
Eunho Yang
25
8
0
02 Dec 2021
Learning Invariant Representations with Missing Data
Learning Invariant Representations with Missing Data
Mark Goldstein
J. Jacobsen
O. Chau
A. Saporta
A. Puli
Rajesh Ranganath
Andrew C. Miller
OOD
15
5
0
01 Dec 2021
Towards Principled Disentanglement for Domain Generalization
Towards Principled Disentanglement for Domain Generalization
Hanlin Zhang
Yi-Fan Zhang
Weiyang Liu
Adrian Weller
Bernhard Schölkopf
Eric P. Xing
OOD
28
112
0
27 Nov 2021
Simple data balancing achieves competitive worst-group-accuracy
Simple data balancing achieves competitive worst-group-accuracy
Badr Youbi Idrissi
Martín Arjovsky
Mohammad Pezeshki
David Lopez-Paz
28
173
0
27 Oct 2021
Focus on the Common Good: Group Distributional Robustness Follows
Focus on the Common Good: Group Distributional Robustness Follows
Vihari Piratla
Praneeth Netrapalli
Sunita Sarawagi
OOD
26
25
0
06 Oct 2021
Desiderata for Representation Learning: A Causal Perspective
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
30
80
0
08 Sep 2021
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
38
204
0
07 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
31
515
0
31 Aug 2021
A comparison of approaches to improve worst-case predictive model
  performance over patient subpopulations
A comparison of approaches to improve worst-case predictive model performance over patient subpopulations
Stephen R. Pfohl
Haoran Zhang
Yizhe Xu
Agata Foryciarz
Marzyeh Ghassemi
N. Shah
OOD
21
22
0
27 Aug 2021
Learning Stable Classifiers by Transferring Unstable Features
Learning Stable Classifiers by Transferring Unstable Features
Yujia Bao
Shiyu Chang
Regina Barzilay
OOD
19
8
0
15 Jun 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
196
125
0
04 Jan 2021
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
233
673
0
17 Feb 2018
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,082
0
24 Oct 2016
Previous
12