ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.06978
  4. Cited By
Differentiable Causal Discovery Under Unmeasured Confounding

Differentiable Causal Discovery Under Unmeasured Confounding

14 October 2020
Rohit Bhattacharya
Tushar Nagarajan
Daniel Malinsky
I. Shpitser
    CML
ArXivPDFHTML

Papers citing "Differentiable Causal Discovery Under Unmeasured Confounding"

15 / 15 papers shown
Title
dcFCI: Robust Causal Discovery Under Latent Confounding, Unfaithfulness, and Mixed Data
dcFCI: Robust Causal Discovery Under Latent Confounding, Unfaithfulness, and Mixed Data
Adèle H. Ribeiro
Dominik Heider
CML
26
0
0
10 May 2025
Addressing pitfalls in implicit unobserved confounding synthesis using explicit block hierarchical ancestral sampling
Addressing pitfalls in implicit unobserved confounding synthesis using explicit block hierarchical ancestral sampling
Xudong Sun
Alex Markham
Pratik Misra
Carsten Marr
CML
68
0
0
12 Mar 2025
Human-in-the-Loop Causal Discovery under Latent Confounding using
  Ancestral GFlowNets
Human-in-the-Loop Causal Discovery under Latent Confounding using Ancestral GFlowNets
Tiago da Silva
Eliezer de Souza da Silva
Adèle H. Ribeiro
António Góis
Dominik Heider
Samuel Kaski
Diego Mesquita
CML
49
6
0
21 Sep 2023
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity
  Characterization
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
61
78
0
16 Sep 2022
Truncated Matrix Power Iteration for Differentiable DAG Learning
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
Ehsan Abbasnejad
Biwei Huang
Anton van den Hengel
Javen Qinfeng Shi
32
25
0
30 Aug 2022
Valid Inference after Causal Discovery
Valid Inference after Causal Discovery
Paula Gradu
Tijana Zrnic
Yixin Wang
Michael I. Jordan
CML
26
8
0
11 Aug 2022
Amortized Inference for Causal Structure Learning
Amortized Inference for Causal Structure Learning
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
29
60
0
25 May 2022
On Testability of the Front-Door Model via Verma Constraints
On Testability of the Front-Door Model via Verma Constraints
Rohit Bhattacharya
Razieh Nabi
32
8
0
01 Mar 2022
gCastle: A Python Toolbox for Causal Discovery
gCastle: A Python Toolbox for Causal Discovery
Keli Zhang
Shengyu Zhu
Marcus Kalander
Ignavier Ng
Junjian Ye
Zhitang Chen
Lujia Pan
CML
27
60
0
30 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous
  Optimization
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Anton van den Hengel
FedML
47
38
0
18 Oct 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal
  Assumptions
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
16
26
0
27 Aug 2021
Unsuitability of NOTEARS for Causal Graph Discovery
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
27
65
0
12 Apr 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To
  Game
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
21
136
0
26 Feb 2021
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
113
258
0
29 Sep 2019
1