Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.06081
Cited By
Oort: Efficient Federated Learning via Guided Participant Selection
12 October 2020
Fan Lai
Xiangfeng Zhu
H. Madhyastha
Mosharaf Chowdhury
FedML
OODD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Oort: Efficient Federated Learning via Guided Participant Selection"
37 / 37 papers shown
Title
Circinus: Efficient Query Planner for Compound ML Serving
Banruo Liu
Wei-Yu Lin
Minghao Fang
Yihan Jiang
Fan Lai
LRM
39
0
0
23 Apr 2025
Moss: Proxy Model-based Full-Weight Aggregation in Federated Learning with Heterogeneous Models
Y. Cai
Ziqi Zhang
Ding Li
Yao Guo
Xiangqun Chen
60
0
0
13 Mar 2025
Breaking the Memory Wall for Heterogeneous Federated Learning via Model Splitting
Chunlin Tian
Li Li
Kahou Tam
Yebo Wu
Chengzhong Xu
FedML
34
3
0
12 Oct 2024
FedEx: Expediting Federated Learning over Heterogeneous Mobile Devices by Overlapping and Participant Selection
Jiaxiang Geng
Boyu Li
Xiaoqi Qin
Yixuan Li
Liang Li
Yanzhao Hou
Miao Pan
FedML
42
0
0
01 Jul 2024
WHALE-FL: Wireless and Heterogeneity Aware Latency Efficient Federated Learning over Mobile Devices via Adaptive Subnetwork Scheduling
Huai-an Su
Jiaxiang Geng
Liang Li
Xiaoqi Qin
Yanzhao Hou
Xin Fu
Miao Pan
Miao Pan
50
1
0
01 May 2024
A Survey on Federated Analytics: Taxonomy, Enabling Techniques, Applications and Open Issues
Zibo Wang
Haichao Ji
Yifei Zhu
Dan Wang
Zhu Han
53
1
0
19 Apr 2024
Federated Learning over Connected Modes
Dennis Grinwald
Philipp Wiesner
Shinichi Nakajima
FedML
45
0
0
05 Mar 2024
FedImpro: Measuring and Improving Client Update in Federated Learning
Zhenheng Tang
Yonggang Zhang
S. Shi
Xinmei Tian
Tongliang Liu
Bo Han
Xiaowen Chu
FedML
28
13
0
10 Feb 2024
Federated learning with differential privacy and an untrusted aggregator
Kunlong Liu
Trinabh Gupta
52
0
0
17 Dec 2023
EcoLearn: Optimizing the Carbon Footprint of Federated Learning
Talha Mehboob
Noman Bashir
Jesus Omana Iglesias
Michael Zink
David Irwin
33
0
0
27 Oct 2023
FedPEAT: Convergence of Federated Learning, Parameter-Efficient Fine Tuning, and Emulator Assisted Tuning for Artificial Intelligence Foundation Models with Mobile Edge Computing
Terence Jie Chua
Wen-li Yu
Junfeng Zhao
Kwok-Yan Lam
FedML
32
5
0
26 Oct 2023
Optimization of Federated Learning's Client Selection for Non-IID Data Based on Grey Relational Analysis
Shuaijun Chen
Omid Tavallaie
Michael Henri Hambali
S. M. Zandavi
Hamed Haddadi
Nicholas D. Lane
Song Guo
Albert Y. Zomaya
FedML
34
1
0
12 Oct 2023
A Survey for Federated Learning Evaluations: Goals and Measures
Di Chai
Leye Wang
Liu Yang
Junxue Zhang
Kai Chen
Qian Yang
ELM
FedML
27
21
0
23 Aug 2023
FLIPS: Federated Learning using Intelligent Participant Selection
R. Bhope
K.R. Jayaram
N. Venkatasubramanian
Ashish Verma
Gegi Thomas
FedML
29
3
0
07 Aug 2023
FedZero: Leveraging Renewable Excess Energy in Federated Learning
Philipp Wiesner
R. Khalili
Dennis Grinwald
Pratik Agrawal
L. Thamsen
O. Kao
36
16
0
24 May 2023
A Survey of Federated Evaluation in Federated Learning
Behnaz Soltani
Yipeng Zhou
Venus Haghighi
John C. S. Lui
FedML
43
12
0
14 May 2023
Incentivising the federation: gradient-based metrics for data selection and valuation in private decentralised training
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
FedML
28
2
0
04 May 2023
Federated Learning without Full Labels: A Survey
Yilun Jin
Yang Liu
Kai Chen
Qian Yang
FedML
17
26
0
25 Mar 2023
FS-Real: Towards Real-World Cross-Device Federated Learning
Daoyuan Chen
Dawei Gao
Yuexiang Xie
Xuchen Pan
Zitao Li
Yaliang Li
Bolin Ding
Jingren Zhou
117
26
0
23 Mar 2023
Decentralized Learning Made Practical with Client Sampling
M. Vos
Akash Dhasade
Anne-Marie Kermarrec
Erick Lavoie
J. Pouwelse
Rishi Sharma
29
1
0
27 Feb 2023
Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical IoT Networks
Xiaofan Yu
L. Cherkasova
Hars Vardhan
Quanling Zhao
Emily Ekaireb
Xiyuan Zhang
A. Mazumdar
T. Rosing
17
25
0
17 Jan 2023
HiFlash: Communication-Efficient Hierarchical Federated Learning with Adaptive Staleness Control and Heterogeneity-aware Client-Edge Association
Qiong Wu
Xu Chen
Ouyang Tao
Zhi Zhou
Xiaoxi Zhang
Shusen Yang
Junshan Zhang
37
44
0
16 Jan 2023
MDA: Availability-Aware Federated Learning Client Selection
Amin Eslami Abyane
Steve Drew
Hadi Hemmati
FedML
18
5
0
25 Nov 2022
Client Selection in Federated Learning: Principles, Challenges, and Opportunities
Lei Fu
Huan Zhang
Ge Gao
Mi Zhang
Xin Liu
FedML
39
118
0
03 Nov 2022
FedorAS: Federated Architecture Search under system heterogeneity
L. Dudziak
Stefanos Laskaridis
Javier Fernandez-Marques
FedML
39
7
0
22 Jun 2022
pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning
Daoyuan Chen
Dawei Gao
Weirui Kuang
Yaliang Li
Bolin Ding
FedML
42
64
0
08 Jun 2022
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Michael G. Rabbat
Carole-Jean Wu
FedML
45
31
0
30 May 2022
BagPipe: Accelerating Deep Recommendation Model Training
Saurabh Agarwal
Chengpo Yan
Ziyi Zhang
Shivaram Venkataraman
37
18
0
24 Feb 2022
FLAME: Federated Learning Across Multi-device Environments
Hyunsung Cho
Akhil Mathur
F. Kawsar
16
21
0
17 Feb 2022
Egeria: Efficient DNN Training with Knowledge-Guided Layer Freezing
Yiding Wang
D. Sun
Kai Chen
Fan Lai
Mosharaf Chowdhury
33
44
0
17 Jan 2022
A Multi-agent Reinforcement Learning Approach for Efficient Client Selection in Federated Learning
Shanghang Zhang
Jieyu Lin
Qi Zhang
37
63
0
09 Jan 2022
FedBalancer: Data and Pace Control for Efficient Federated Learning on Heterogeneous Clients
Jaemin Shin
Yuanchun Li
Yunxin Liu
Sung-Ju Lee
FedML
17
74
0
05 Jan 2022
Context-Aware Online Client Selection for Hierarchical Federated Learning
Zhe Qu
Rui Duan
Lixing Chen
Jie Xu
Zhuo Lu
Yao-Hong Liu
39
61
0
02 Dec 2021
Federated Learning for Internet of Things: Applications, Challenges, and Opportunities
Tuo Zhang
Lei Gao
Chaoyang He
Mi Zhang
Bhaskar Krishnamachari
Salman Avestimehr
FedML
19
168
0
15 Nov 2021
The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning
Raed Al Kontar
Naichen Shi
Xubo Yue
Seokhyun Chung
E. Byon
...
Chinedum Okwudire
Garvesh Raskutti
R. Saigal
Karandeep Singh
Ye Zhisheng
FedML
49
51
0
09 Nov 2021
FedTune: Automatic Tuning of Federated Learning Hyper-Parameters from System Perspective
Huan Zhang
Mi Zhang
Xin Liu
P. Mohapatra
Michael DeLucia
FedML
31
18
0
06 Oct 2021
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
42
192
0
26 Oct 2020
1