ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.05893
  4. Cited By
Large-Scale Methods for Distributionally Robust Optimization

Large-Scale Methods for Distributionally Robust Optimization

12 October 2020
Daniel Levy
Y. Carmon
John C. Duchi
Aaron Sidford
ArXivPDFHTML

Papers citing "Large-Scale Methods for Distributionally Robust Optimization"

50 / 53 papers shown
Title
Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws
Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws
Xiyuan Wei
Ming Lin
Fanjiang Ye
Fengguang Song
Liangliang Cao
My T. Thai
Tianbao Yang
LLMSV
34
0
0
10 May 2025
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Yuqing Yang
Yi Zhou
Zhaosong Lu
49
0
0
29 Mar 2025
Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis
Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis
Jiajin Li
Lingling Zhu
Anthony Man-Cho So
54
4
0
17 Jan 2025
Federated Learning with Relative Fairness
Federated Learning with Relative Fairness
Shogo H. Nakakita
Tatsuya Kaneko
Shinya Takamaeda-Yamazaki
Masaaki Imaizumi
FedML
32
2
0
02 Nov 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
38
0
0
19 Jul 2024
Spuriousness-Aware Meta-Learning for Learning Robust Classifiers
Spuriousness-Aware Meta-Learning for Learning Robust Classifiers
Guangtao Zheng
Wenqian Ye
Aidong Zhang
54
0
0
15 Jun 2024
AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark
AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark
Li Lin
Santosh
Xin Wang
Shu Hu
Shu Hu
EGVM
81
11
0
02 Jun 2024
Fast Computation of Superquantile-Constrained Optimization Through
  Implicit Scenario Reduction
Fast Computation of Superquantile-Constrained Optimization Through Implicit Scenario Reduction
Jake Roth
Ying Cui
31
2
0
13 May 2024
Robust COVID-19 Detection in CT Images with CLIP
Robust COVID-19 Detection in CT Images with CLIP
Li Lin
Yamini Sri Krubha
Zhenhuan Yang
Cheng Ren
Thuc Duy Le
Irene Amerini
Xin Wang
Shu Hu
37
10
0
13 Mar 2024
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Benjamin Eyre
Elliot Creager
David Madras
Antonio Torralba
Katherine Heller
OOD
OODD
40
1
0
29 Dec 2023
FedDRO: Federated Compositional Optimization for Distributionally Robust
  Learning
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
42
0
0
21 Nov 2023
On the Parallel Complexity of Multilevel Monte Carlo in Stochastic
  Gradient Descent
On the Parallel Complexity of Multilevel Monte Carlo in Stochastic Gradient Descent
Kei Ishikawa
BDL
63
0
0
03 Oct 2023
Bias Amplification Enhances Minority Group Performance
Bias Amplification Enhances Minority Group Performance
Gaotang Li
Jiarui Liu
Wei Hu
28
5
0
13 Sep 2023
Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization
Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization
Ting Wu
Rui Zheng
Tao Gui
Qi Zhang
Xuanjing Huang
51
2
0
20 May 2023
Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on
  Classical and Recent Developments
Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on Classical and Recent Developments
Quoc Tran-Dinh
35
7
0
30 Mar 2023
Distributionally Robust Optimization with Probabilistic Group
Distributionally Robust Optimization with Probabilistic Group
Soumya Suvra Ghosal
Yixuan Li
OOD
13
7
0
10 Mar 2023
Data-Driven Distributionally Robust Optimal Control with State-Dependent
  Noise
Data-Driven Distributionally Robust Optimal Control with State-Dependent Noise
Rui Liu
Guan-Yu Shi
Pratap Tokekar
19
7
0
04 Mar 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
28
57
0
08 Feb 2023
Extragradient-Type Methods with $\mathcal{O} (1/k)$ Last-Iterate
  Convergence Rates for Co-Hypomonotone Inclusions
Extragradient-Type Methods with O(1/k)\mathcal{O} (1/k)O(1/k) Last-Iterate Convergence Rates for Co-Hypomonotone Inclusions
Quoc Tran-Dinh
31
2
0
08 Feb 2023
Hyper-parameter Tuning for Fair Classification without Sensitive
  Attribute Access
Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access
A. Veldanda
Ivan Brugere
Sanghamitra Dutta
Alan Mishler
S. Garg
39
5
0
02 Feb 2023
Learning Against Distributional Uncertainty: On the Trade-off Between Robustness and Specificity
Learning Against Distributional Uncertainty: On the Trade-off Between Robustness and Specificity
Shixiong Wang
Haowei Wang
Xinke Li
Jean Honorio
OOD
65
1
0
31 Jan 2023
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Xiao Zhou
Yong Lin
Renjie Pi
Weizhong Zhang
Renzhe Xu
Peng Cui
Tong Zhang
OODD
39
60
0
24 Jan 2023
Stochastic Optimization for Spectral Risk Measures
Stochastic Optimization for Spectral Risk Measures
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
32
6
0
10 Dec 2022
An Efficient Stochastic Algorithm for Decentralized
  Nonconvex-Strongly-Concave Minimax Optimization
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization
Le‐Yu Chen
Haishan Ye
Luo Luo
68
5
0
05 Dec 2022
Learning Antidote Data to Individual Unfairness
Learning Antidote Data to Individual Unfairness
Peizhao Li
Ethan Xia
Hongfu Liu
FedML
FaML
24
9
0
29 Nov 2022
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Josh Gardner
Zoran Popovic
Ludwig Schmidt
OOD
34
22
0
23 Nov 2022
Outlier-Aware Training for Improving Group Accuracy Disparities
Outlier-Aware Training for Improving Group Accuracy Disparities
Li-Kuang Chen
Canasai Kruengkrai
Junichi Yamagishi
29
0
0
27 Oct 2022
Distributed Distributionally Robust Optimization with Non-Convex
  Objectives
Distributed Distributionally Robust Optimization with Non-Convex Objectives
Yang Jiao
Kai Yang
Dongjin Song
29
11
0
14 Oct 2022
MaskTune: Mitigating Spurious Correlations by Forcing to Explore
MaskTune: Mitigating Spurious Correlations by Forcing to Explore
Saeid Asgari Taghanaki
Aliasghar Khani
Fereshte Khani
A. Gholami
Linh-Tam Tran
Ali Mahdavi-Amiri
Ghassan Hamarneh
AAML
43
45
0
30 Sep 2022
UMIX: Improving Importance Weighting for Subpopulation Shift via
  Uncertainty-Aware Mixup
UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup
Zongbo Han
Zhipeng Liang
Fan Yang
Liu Liu
Lanqing Li
Yatao Bian
P. Zhao
Bing Wu
Changqing Zhang
Jianhua Yao
56
34
0
19 Sep 2022
Learning from a Biased Sample
Learning from a Biased Sample
Roshni Sahoo
Lihua Lei
Stefan Wager
27
17
0
05 Sep 2022
Calibrated Selective Classification
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
29
16
0
25 Aug 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
38
32
0
18 Jul 2022
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
58
11
0
17 Jun 2022
Learning to Split for Automatic Bias Detection
Learning to Split for Automatic Bias Detection
Yujia Bao
Regina Barzilay
17
20
0
28 Apr 2022
Distributionally Robust Models with Parametric Likelihood Ratios
Distributionally Robust Models with Parametric Likelihood Ratios
Paul Michel
Tatsunori Hashimoto
Graham Neubig
OOD
30
15
0
13 Apr 2022
Distributionally Robust Optimization via Ball Oracle Acceleration
Distributionally Robust Optimization via Ball Oracle Acceleration
Y. Carmon
Danielle Hausler
18
11
0
24 Mar 2022
Challenges and Strategies in Cross-Cultural NLP
Challenges and Strategies in Cross-Cultural NLP
Daniel Hershcovich
Stella Frank
Heather Lent
Miryam de Lhoneux
Mostafa Abdou
...
Ruixiang Cui
Constanza Fierro
Katerina Margatina
Phillip Rust
Anders Søgaard
43
164
0
18 Mar 2022
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
  Non-Convex Convergence Guarantee
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee
Dixian Zhu
Gang Li
Bokun Wang
Xiaodong Wu
Tianbao Yang
33
29
0
01 Mar 2022
Towards Group Robustness in the presence of Partial Group Labels
Towards Group Robustness in the presence of Partial Group Labels
Vishnu Suresh Lokhande
Kihyuk Sohn
Jinsung Yoon
Madeleine Udell
Chen-Yu Lee
Tomas Pfister
OOD
37
11
0
10 Jan 2022
BARACK: Partially Supervised Group Robustness With Guarantees
BARACK: Partially Supervised Group Robustness With Guarantees
N. Sohoni
Maziar Sanjabi
Nicolas Ballas
Aditya Grover
Shaoliang Nie
Hamed Firooz
Christopher Ré
OOD
20
24
0
31 Dec 2021
Constrained Instance and Class Reweighting for Robust Learning under
  Label Noise
Constrained Instance and Class Reweighting for Robust Learning under Label Noise
Abhishek Kumar
Ehsan Amid
NoLa
32
19
0
09 Nov 2021
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Jikai Jin
Samir Bhatt
Haiyang Wang
Liwei Wang
32
48
0
24 Oct 2021
Sinkhorn Distributionally Robust Optimization
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
46
35
0
24 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
55
517
0
31 Aug 2021
Stochastic Bias-Reduced Gradient Methods
Stochastic Bias-Reduced Gradient Methods
Hilal Asi
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
24
29
0
17 Jun 2021
Adversarially Robust Kernel Smoothing
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
28
7
0
16 Feb 2021
Achieving Efficiency in Black Box Simulation of Distribution Tails with
  Self-structuring Importance Samplers
Achieving Efficiency in Black Box Simulation of Distribution Tails with Self-structuring Importance Samplers
Anand Deo
Karthyek Murthy
22
10
0
14 Feb 2021
Attentional-Biased Stochastic Gradient Descent
Attentional-Biased Stochastic Gradient Descent
Q. Qi
Yi Tian Xu
Rong Jin
W. Yin
Tianbao Yang
ODL
31
12
0
13 Dec 2020
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained
  Classification Problems
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
N. Sohoni
Jared A. Dunnmon
Geoffrey Angus
Albert Gu
Christopher Ré
30
242
0
25 Nov 2020
12
Next