Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.05893
Cited By
Large-Scale Methods for Distributionally Robust Optimization
12 October 2020
Daniel Levy
Y. Carmon
John C. Duchi
Aaron Sidford
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Large-Scale Methods for Distributionally Robust Optimization"
50 / 53 papers shown
Title
Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws
Xiyuan Wei
Ming Lin
Fanjiang Ye
Fengguang Song
Liangliang Cao
My T. Thai
Tianbao Yang
LLMSV
34
0
0
10 May 2025
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Yuqing Yang
Yi Zhou
Zhaosong Lu
49
0
0
29 Mar 2025
Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis
Jiajin Li
Lingling Zhu
Anthony Man-Cho So
54
4
0
17 Jan 2025
Federated Learning with Relative Fairness
Shogo H. Nakakita
Tatsuya Kaneko
Shinya Takamaeda-Yamazaki
Masaaki Imaizumi
FedML
32
2
0
02 Nov 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
38
0
0
19 Jul 2024
Spuriousness-Aware Meta-Learning for Learning Robust Classifiers
Guangtao Zheng
Wenqian Ye
Aidong Zhang
54
0
0
15 Jun 2024
AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark
Li Lin
Santosh
Xin Wang
Shu Hu
Shu Hu
EGVM
81
11
0
02 Jun 2024
Fast Computation of Superquantile-Constrained Optimization Through Implicit Scenario Reduction
Jake Roth
Ying Cui
31
2
0
13 May 2024
Robust COVID-19 Detection in CT Images with CLIP
Li Lin
Yamini Sri Krubha
Zhenhuan Yang
Cheng Ren
Thuc Duy Le
Irene Amerini
Xin Wang
Shu Hu
37
10
0
13 Mar 2024
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Benjamin Eyre
Elliot Creager
David Madras
Antonio Torralba
Katherine Heller
OOD
OODD
40
1
0
29 Dec 2023
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
42
0
0
21 Nov 2023
On the Parallel Complexity of Multilevel Monte Carlo in Stochastic Gradient Descent
Kei Ishikawa
BDL
63
0
0
03 Oct 2023
Bias Amplification Enhances Minority Group Performance
Gaotang Li
Jiarui Liu
Wei Hu
28
5
0
13 Sep 2023
Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization
Ting Wu
Rui Zheng
Tao Gui
Qi Zhang
Xuanjing Huang
51
2
0
20 May 2023
Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on Classical and Recent Developments
Quoc Tran-Dinh
35
7
0
30 Mar 2023
Distributionally Robust Optimization with Probabilistic Group
Soumya Suvra Ghosal
Yixuan Li
OOD
13
7
0
10 Mar 2023
Data-Driven Distributionally Robust Optimal Control with State-Dependent Noise
Rui Liu
Guan-Yu Shi
Pratap Tokekar
19
7
0
04 Mar 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
28
57
0
08 Feb 2023
Extragradient-Type Methods with
O
(
1
/
k
)
\mathcal{O} (1/k)
O
(
1/
k
)
Last-Iterate Convergence Rates for Co-Hypomonotone Inclusions
Quoc Tran-Dinh
31
2
0
08 Feb 2023
Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access
A. Veldanda
Ivan Brugere
Sanghamitra Dutta
Alan Mishler
S. Garg
39
5
0
02 Feb 2023
Learning Against Distributional Uncertainty: On the Trade-off Between Robustness and Specificity
Shixiong Wang
Haowei Wang
Xinke Li
Jean Honorio
OOD
65
1
0
31 Jan 2023
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Xiao Zhou
Yong Lin
Renjie Pi
Weizhong Zhang
Renzhe Xu
Peng Cui
Tong Zhang
OODD
39
60
0
24 Jan 2023
Stochastic Optimization for Spectral Risk Measures
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
32
6
0
10 Dec 2022
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization
Le‐Yu Chen
Haishan Ye
Luo Luo
68
5
0
05 Dec 2022
Learning Antidote Data to Individual Unfairness
Peizhao Li
Ethan Xia
Hongfu Liu
FedML
FaML
24
9
0
29 Nov 2022
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Josh Gardner
Zoran Popovic
Ludwig Schmidt
OOD
34
22
0
23 Nov 2022
Outlier-Aware Training for Improving Group Accuracy Disparities
Li-Kuang Chen
Canasai Kruengkrai
Junichi Yamagishi
29
0
0
27 Oct 2022
Distributed Distributionally Robust Optimization with Non-Convex Objectives
Yang Jiao
Kai Yang
Dongjin Song
29
11
0
14 Oct 2022
MaskTune: Mitigating Spurious Correlations by Forcing to Explore
Saeid Asgari Taghanaki
Aliasghar Khani
Fereshte Khani
A. Gholami
Linh-Tam Tran
Ali Mahdavi-Amiri
Ghassan Hamarneh
AAML
43
45
0
30 Sep 2022
UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup
Zongbo Han
Zhipeng Liang
Fan Yang
Liu Liu
Lanqing Li
Yatao Bian
P. Zhao
Bing Wu
Changqing Zhang
Jianhua Yao
56
34
0
19 Sep 2022
Learning from a Biased Sample
Roshni Sahoo
Lihua Lei
Stefan Wager
27
17
0
05 Sep 2022
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
29
16
0
25 Aug 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
38
32
0
18 Jul 2022
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
58
11
0
17 Jun 2022
Learning to Split for Automatic Bias Detection
Yujia Bao
Regina Barzilay
17
20
0
28 Apr 2022
Distributionally Robust Models with Parametric Likelihood Ratios
Paul Michel
Tatsunori Hashimoto
Graham Neubig
OOD
30
15
0
13 Apr 2022
Distributionally Robust Optimization via Ball Oracle Acceleration
Y. Carmon
Danielle Hausler
18
11
0
24 Mar 2022
Challenges and Strategies in Cross-Cultural NLP
Daniel Hershcovich
Stella Frank
Heather Lent
Miryam de Lhoneux
Mostafa Abdou
...
Ruixiang Cui
Constanza Fierro
Katerina Margatina
Phillip Rust
Anders Søgaard
43
164
0
18 Mar 2022
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee
Dixian Zhu
Gang Li
Bokun Wang
Xiaodong Wu
Tianbao Yang
33
29
0
01 Mar 2022
Towards Group Robustness in the presence of Partial Group Labels
Vishnu Suresh Lokhande
Kihyuk Sohn
Jinsung Yoon
Madeleine Udell
Chen-Yu Lee
Tomas Pfister
OOD
37
11
0
10 Jan 2022
BARACK: Partially Supervised Group Robustness With Guarantees
N. Sohoni
Maziar Sanjabi
Nicolas Ballas
Aditya Grover
Shaoliang Nie
Hamed Firooz
Christopher Ré
OOD
20
24
0
31 Dec 2021
Constrained Instance and Class Reweighting for Robust Learning under Label Noise
Abhishek Kumar
Ehsan Amid
NoLa
32
19
0
09 Nov 2021
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Jikai Jin
Samir Bhatt
Haiyang Wang
Liwei Wang
32
48
0
24 Oct 2021
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
46
35
0
24 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
55
517
0
31 Aug 2021
Stochastic Bias-Reduced Gradient Methods
Hilal Asi
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
24
29
0
17 Jun 2021
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
28
7
0
16 Feb 2021
Achieving Efficiency in Black Box Simulation of Distribution Tails with Self-structuring Importance Samplers
Anand Deo
Karthyek Murthy
22
10
0
14 Feb 2021
Attentional-Biased Stochastic Gradient Descent
Q. Qi
Yi Tian Xu
Rong Jin
W. Yin
Tianbao Yang
ODL
31
12
0
13 Dec 2020
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
N. Sohoni
Jared A. Dunnmon
Geoffrey Angus
Albert Gu
Christopher Ré
30
242
0
25 Nov 2020
1
2
Next