Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.05788
Cited By
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
12 October 2020
Minh Nhat Vu
My T. Thai
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks"
28 / 28 papers shown
Title
Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks
Han Zhang
Yan Wang
Guanfeng Liu
Pengfei Ding
Huaxiong Wang
Kwok-Yan Lam
80
0
0
20 May 2025
MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Zhaoning Yu
Hongyang Gao
109
3
0
21 May 2024
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
520
42,449
0
03 Dec 2019
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
Jiaqi Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng Zhang
AI4CE
GNN
286
757
0
03 Sep 2019
c-Eval: A Unified Metric to Evaluate Feature-based Explanations via Perturbation
Minh Nhat Vu
Truc D. T. Nguyen
Nhathai Phan
Ralucca Gera
My T. Thai
AAML
FAtt
43
22
0
05 Jun 2019
Self-Attention Graph Pooling
Junhyun Lee
Inyeop Lee
Jaewoo Kang
GNN
175
1,121
0
17 Apr 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
150
1,323
0
10 Mar 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
243
7,653
0
01 Oct 2018
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
297
2,148
0
22 Jun 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
293
902
0
07 Jun 2018
Link Prediction Based on Graph Neural Networks
Muhan Zhang
Yixin Chen
GNN
100
1,937
0
27 Feb 2018
MotifNet: a motif-based Graph Convolutional Network for directed graphs
Federico Monti
Karl Otness
M. Bronstein
GNN
75
144
0
04 Feb 2018
Modeling polypharmacy side effects with graph convolutional networks
Marinka Zitnik
Monica Agrawal
J. Leskovec
GNN
116
1,083
0
02 Feb 2018
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,164
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
509
15,247
0
07 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,939
0
22 May 2017
CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters
Ron Levie
Federico Monti
Xavier Bresson
M. Bronstein
GNN
185
659
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
201
3,873
0
10 Apr 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
402
3,798
0
28 Feb 2017
Gradients of Counterfactuals
Mukund Sundararajan
Ankur Taly
Qiqi Yan
FAtt
59
104
0
08 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
321
20,023
0
07 Oct 2016
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
644
29,076
0
09 Sep 2016
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
81
947
0
01 Aug 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
353
7,655
0
30 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,672
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,308
0
20 Dec 2013
1