ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.05272
57
61
v1v2v3 (latest)

IF-Defense: 3D Adversarial Point Cloud Defense via Implicit Function based Restoration

11 October 2020
Ziyi Wu
Yueqi Duan
He Wang
Qingnan Fan
Leonidas Guibas
    3DPC
ArXiv (abs)PDFHTMLGithub (67★)
Abstract

Point cloud is an important 3D data representation widely used in many essential applications. Leveraging deep neural networks, recent works have shown great success in processing 3D point clouds. However, those deep neural networks are vulnerable to various 3D adversarial attacks, which can be summarized as two primary types: point perturbation that affects local point distribution, and surface distortion that causes dramatic changes in geometry. In this paper, we propose a novel 3D adversarial point cloud defense method leveraging implicit function based restoration (IF-Defense) to address both the aforementioned attacks. It is composed of two steps: 1) it predicts an implicit function that captures the clean shape through a surface recovery module, and 2) restores a clean and complete point cloud via minimizing the difference between the attacked point cloud and the predicted implicit function under geometry- and distribution- aware constraints. Our experimental results show that IF-Defense achieves the state-of-the-art defense performance against all existing adversarial attacks on PointNet, PointNet++, DGCNN and PointConv. Comparing with previous methods, IF-Defense presents 20.02% improvement in classification accuracy against salient point dropping attack and 16.29% against LG-GAN attack on PointNet.

View on arXiv
Comments on this paper