Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.04903
Cited By
What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding
10 October 2020
Yu-An Wang
Yun-Nung Chen
SSL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding"
18 / 18 papers shown
Title
AttentionSmithy: A Modular Framework for Rapid Transformer Development and Customization
Caleb Cranney
Jesse G. Meyer
85
0
0
13 Feb 2025
TEE4EHR: Transformer Event Encoder for Better Representation Learning in Electronic Health Records
Hojjat Karami
David Atienza
Anisoara Ionescu
AI4TS
38
1
0
09 Feb 2024
Investigating the Effect of Relative Positional Embeddings on AMR-to-Text Generation with Structural Adapters
Sébastien Montella
Alexis Nasr
Johannes Heinecke
Frédéric Béchet
L. Rojas-Barahona
29
2
0
12 Feb 2023
Position Embedding Needs an Independent Layer Normalization
Runyi Yu
Zhennan Wang
Yinhuai Wang
Kehan Li
Yian Zhao
Jian Zhang
Guoli Song
Jie Chen
31
1
0
10 Dec 2022
Rethinking Video ViTs: Sparse Video Tubes for Joint Image and Video Learning
A. Piergiovanni
Weicheng Kuo
A. Angelova
ViT
38
54
0
06 Dec 2022
The Curious Case of Absolute Position Embeddings
Koustuv Sinha
Amirhossein Kazemnejad
Siva Reddy
J. Pineau
Dieuwke Hupkes
Adina Williams
87
15
0
23 Oct 2022
Experiencer-Specific Emotion and Appraisal Prediction
Maximilian Wegge
Enrica Troiano
Laura Oberländer
Roman Klinger
37
7
0
21 Oct 2022
Deep Transformer Q-Networks for Partially Observable Reinforcement Learning
Kevin Esslinger
Robert W. Platt
Chris Amato
OffRL
35
35
0
02 Jun 2022
ATTEMPT: Parameter-Efficient Multi-task Tuning via Attentional Mixtures of Soft Prompts
Akari Asai
Mohammadreza Salehi
Matthew E. Peters
Hannaneh Hajishirzi
130
100
0
24 May 2022
UniTE: Unified Translation Evaluation
Boyi Deng
Dayiheng Liu
Baosong Yang
Haibo Zhang
Boxing Chen
Derek F. Wong
Lidia S. Chao
41
41
0
28 Apr 2022
Topic Detection and Tracking with Time-Aware Document Embeddings
Hang Jiang
Doug Beeferman
Weiquan Mao
D. Roy
AI4TS
21
1
0
12 Dec 2021
Shaking Syntactic Trees on the Sesame Street: Multilingual Probing with Controllable Perturbations
Ekaterina Taktasheva
Vladislav Mikhailov
Ekaterina Artemova
24
13
0
28 Sep 2021
RuleBert: Teaching Soft Rules to Pre-trained Language Models
Mohammed Saeed
N. Ahmadi
Preslav Nakov
Paolo Papotti
LRM
261
32
0
24 Sep 2021
The Grammar-Learning Trajectories of Neural Language Models
Leshem Choshen
Guy Hacohen
D. Weinshall
Omri Abend
31
28
0
13 Sep 2021
The Case for Translation-Invariant Self-Attention in Transformer-Based Language Models
Ulme Wennberg
G. Henter
MILM
35
21
0
03 Jun 2021
Relative Positional Encoding for Transformers with Linear Complexity
Antoine Liutkus
Ondřej Cífka
Shih-Lun Wu
Umut Simsekli
Yi-Hsuan Yang
Gaël Richard
38
45
0
18 May 2021
"Average" Approximates "First Principal Component"? An Empirical Analysis on Representations from Neural Language Models
Zihan Wang
Chengyu Dong
Jingbo Shang
FAtt
42
4
0
18 Apr 2021
Position Information in Transformers: An Overview
Philipp Dufter
Martin Schmitt
Hinrich Schütze
18
141
0
22 Feb 2021
1