ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.04903
  4. Cited By
What Do Position Embeddings Learn? An Empirical Study of Pre-Trained
  Language Model Positional Encoding

What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding

10 October 2020
Yu-An Wang
Yun-Nung Chen
    SSL
ArXivPDFHTML

Papers citing "What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding"

18 / 18 papers shown
Title
AttentionSmithy: A Modular Framework for Rapid Transformer Development and Customization
AttentionSmithy: A Modular Framework for Rapid Transformer Development and Customization
Caleb Cranney
Jesse G. Meyer
85
0
0
13 Feb 2025
TEE4EHR: Transformer Event Encoder for Better Representation Learning in
  Electronic Health Records
TEE4EHR: Transformer Event Encoder for Better Representation Learning in Electronic Health Records
Hojjat Karami
David Atienza
Anisoara Ionescu
AI4TS
38
1
0
09 Feb 2024
Investigating the Effect of Relative Positional Embeddings on
  AMR-to-Text Generation with Structural Adapters
Investigating the Effect of Relative Positional Embeddings on AMR-to-Text Generation with Structural Adapters
Sébastien Montella
Alexis Nasr
Johannes Heinecke
Frédéric Béchet
L. Rojas-Barahona
29
2
0
12 Feb 2023
Position Embedding Needs an Independent Layer Normalization
Position Embedding Needs an Independent Layer Normalization
Runyi Yu
Zhennan Wang
Yinhuai Wang
Kehan Li
Yian Zhao
Jian Zhang
Guoli Song
Jie Chen
31
1
0
10 Dec 2022
Rethinking Video ViTs: Sparse Video Tubes for Joint Image and Video
  Learning
Rethinking Video ViTs: Sparse Video Tubes for Joint Image and Video Learning
A. Piergiovanni
Weicheng Kuo
A. Angelova
ViT
38
54
0
06 Dec 2022
The Curious Case of Absolute Position Embeddings
The Curious Case of Absolute Position Embeddings
Koustuv Sinha
Amirhossein Kazemnejad
Siva Reddy
J. Pineau
Dieuwke Hupkes
Adina Williams
87
15
0
23 Oct 2022
Experiencer-Specific Emotion and Appraisal Prediction
Experiencer-Specific Emotion and Appraisal Prediction
Maximilian Wegge
Enrica Troiano
Laura Oberländer
Roman Klinger
37
7
0
21 Oct 2022
Deep Transformer Q-Networks for Partially Observable Reinforcement
  Learning
Deep Transformer Q-Networks for Partially Observable Reinforcement Learning
Kevin Esslinger
Robert W. Platt
Chris Amato
OffRL
35
35
0
02 Jun 2022
ATTEMPT: Parameter-Efficient Multi-task Tuning via Attentional Mixtures
  of Soft Prompts
ATTEMPT: Parameter-Efficient Multi-task Tuning via Attentional Mixtures of Soft Prompts
Akari Asai
Mohammadreza Salehi
Matthew E. Peters
Hannaneh Hajishirzi
130
100
0
24 May 2022
UniTE: Unified Translation Evaluation
UniTE: Unified Translation Evaluation
Boyi Deng
Dayiheng Liu
Baosong Yang
Haibo Zhang
Boxing Chen
Derek F. Wong
Lidia S. Chao
41
41
0
28 Apr 2022
Topic Detection and Tracking with Time-Aware Document Embeddings
Topic Detection and Tracking with Time-Aware Document Embeddings
Hang Jiang
Doug Beeferman
Weiquan Mao
D. Roy
AI4TS
21
1
0
12 Dec 2021
Shaking Syntactic Trees on the Sesame Street: Multilingual Probing with
  Controllable Perturbations
Shaking Syntactic Trees on the Sesame Street: Multilingual Probing with Controllable Perturbations
Ekaterina Taktasheva
Vladislav Mikhailov
Ekaterina Artemova
24
13
0
28 Sep 2021
RuleBert: Teaching Soft Rules to Pre-trained Language Models
RuleBert: Teaching Soft Rules to Pre-trained Language Models
Mohammed Saeed
N. Ahmadi
Preslav Nakov
Paolo Papotti
LRM
261
32
0
24 Sep 2021
The Grammar-Learning Trajectories of Neural Language Models
The Grammar-Learning Trajectories of Neural Language Models
Leshem Choshen
Guy Hacohen
D. Weinshall
Omri Abend
31
28
0
13 Sep 2021
The Case for Translation-Invariant Self-Attention in Transformer-Based
  Language Models
The Case for Translation-Invariant Self-Attention in Transformer-Based Language Models
Ulme Wennberg
G. Henter
MILM
35
21
0
03 Jun 2021
Relative Positional Encoding for Transformers with Linear Complexity
Relative Positional Encoding for Transformers with Linear Complexity
Antoine Liutkus
Ondřej Cífka
Shih-Lun Wu
Umut Simsekli
Yi-Hsuan Yang
Gaël Richard
38
45
0
18 May 2021
"Average" Approximates "First Principal Component"? An Empirical
  Analysis on Representations from Neural Language Models
"Average" Approximates "First Principal Component"? An Empirical Analysis on Representations from Neural Language Models
Zihan Wang
Chengyu Dong
Jingbo Shang
FAtt
42
4
0
18 Apr 2021
Position Information in Transformers: An Overview
Position Information in Transformers: An Overview
Philipp Dufter
Martin Schmitt
Hinrich Schütze
18
141
0
22 Feb 2021
1