Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.04053
Cited By
Fairness in Machine Learning: A Survey
4 October 2020
Simon Caton
C. Haas
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fairness in Machine Learning: A Survey"
47 / 147 papers shown
Title
Fair Clustering Through Fairlets
Flavio Chierichetti
Ravi Kumar
Silvio Lattanzi
Sergei Vassilvitskii
FaML
75
437
0
15 Feb 2018
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
109
648
0
13 Feb 2018
Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making
Michael Veale
Max Van Kleek
Reuben Binns
71
424
0
03 Feb 2018
Mitigating Unwanted Biases with Adversarial Learning
B. Zhang
Blake Lemoine
Margaret Mitchell
FaML
204
1,393
0
22 Jan 2018
Interventions over Predictions: Reframing the Ethical Debate for Actuarial Risk Assessment
Chelsea Barabas
Karthik Dinakar
Joichi Ito
M. Virza
Jonathan Zittrain
119
144
0
21 Dec 2017
Calibration for the (Computationally-Identifiable) Masses
Úrsula Hébert-Johnson
Michael P. Kim
Omer Reingold
G. Rothblum
FaML
75
88
0
22 Nov 2017
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
FaML
202
784
0
14 Nov 2017
Fair Kernel Learning
Adrián Pérez-Suay
Valero Laparra
Gonzalo Mateo-García
Jordi Munoz-Marí
L. Gómez-Chova
Gustau Camps-Valls
FaML
69
84
0
16 Oct 2017
Fairness Testing: Testing Software for Discrimination
Sainyam Galhotra
Yuriy Brun
A. Meliou
69
380
0
11 Sep 2017
On Fairness and Calibration
Geoff Pleiss
Manish Raghavan
Felix Wu
Jon M. Kleinberg
Kilian Q. Weinberger
FaML
207
882
0
06 Sep 2017
Fair Pipelines
Amanda Bower
Sarah Kitchen
Laura Niss
Martin Strauss
Alexander Vargas
Suresh Venkatasubramanian
FaML
71
45
0
03 Jul 2017
Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations
Alex Beutel
Jilin Chen
Zhe Zhao
Ed H. Chi
FaML
111
442
0
01 Jul 2017
Racial Disparity in Natural Language Processing: A Case Study of Social Media African-American English
Su Lin Blodgett
Brendan O'Connor
82
148
0
30 Jun 2017
Fairer and more accurate, but for whom?
Alexandra Chouldechova
M. G'Sell
71
63
0
30 Jun 2017
Runaway Feedback Loops in Predictive Policing
D. Ensign
Sorelle A. Friedler
Scott Neville
C. Scheidegger
Suresh Venkatasubramanian
65
347
0
29 Jun 2017
Avoiding Discrimination through Causal Reasoning
Niki Kilbertus
Mateo Rojas-Carulla
Giambattista Parascandolo
Moritz Hardt
Dominik Janzing
Bernhard Schölkopf
FaML
CML
115
584
0
08 Jun 2017
A Convex Framework for Fair Regression
R. Berk
Hoda Heidari
S. Jabbari
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
FaML
125
342
0
07 Jun 2017
Fair Inference On Outcomes
Razieh Nabi
I. Shpitser
FaML
89
354
0
29 May 2017
The cost of fairness in classification
A. Menon
Robert C. Williamson
FaML
65
20
0
25 May 2017
Beyond Parity: Fairness Objectives for Collaborative Filtering
Sirui Yao
Bert Huang
FaML
45
367
0
24 May 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
Balanced Policy Evaluation and Learning
Nathan Kallus
CML
OffRL
437
142
0
21 May 2017
Fairness in Criminal Justice Risk Assessments: The State of the Art
R. Berk
Hoda Heidari
S. Jabbari
Michael Kearns
Aaron Roth
66
1,001
0
27 Mar 2017
Counterfactual Fairness
Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo M. A. Silva
FaML
230
1,587
0
20 Mar 2017
Simple rules for complex decisions
Jongbin Jung
Connor Concannon
Ravi Shroff
Sharad Goel
D. Goldstein
CML
62
105
0
15 Feb 2017
Identifying Significant Predictive Bias in Classifiers
Zhe Zhang
Daniel B. Neill
77
63
0
24 Nov 2016
Learning to Pivot with Adversarial Networks
Gilles Louppe
Michael Kagan
Kyle Cranmer
76
227
0
03 Nov 2016
Fair Algorithms for Infinite and Contextual Bandits
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
FedML
FaML
67
56
0
29 Oct 2016
Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
208
1,214
0
26 Oct 2016
A statistical framework for fair predictive algorithms
K. Lum
J. Johndrow
FaML
330
105
0
25 Oct 2016
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
302
2,131
0
24 Oct 2016
How to be Fair and Diverse?
L. E. Celis
Amit Deshpande
Tarun Kathuria
Nisheeth K. Vishnoi
FaML
78
80
0
23 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
236
4,341
0
07 Oct 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
122
1,783
0
19 Sep 2016
Semantics derived automatically from language corpora contain human-like biases
Aylin Caliskan
J. Bryson
Arvind Narayanan
223
2,678
0
25 Aug 2016
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
Tolga Bolukbasi
Kai-Wei Chang
James Zou
Venkatesh Saligrama
Adam Kalai
CVBM
FaML
114
3,159
0
21 Jul 2016
Satisfying Real-world Goals with Dataset Constraints
Gabriel Goh
Andrew Cotter
Maya R. Gupta
M. Friedlander
OffRL
70
215
0
24 Jun 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
183
3,716
0
10 Jun 2016
Fairness in Learning: Classic and Contextual Bandits
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Aaron Roth
FaML
66
477
0
23 May 2016
Auditing Black-box Models for Indirect Influence
Philip Adler
Casey Falk
Sorelle A. Friedler
Gabriel Rybeck
C. Scheidegger
Brandon Smith
Suresh Venkatasubramanian
TDI
MLAU
170
291
0
23 Feb 2016
A Confidence-Based Approach for Balancing Fairness and Accuracy
Benjamin Fish
Jeremy Kun
Á. Lelkes
FaML
216
248
0
21 Jan 2016
Censoring Representations with an Adversary
Harrison Edwards
Amos Storkey
AAML
FaML
74
506
0
18 Nov 2015
On the relation between accuracy and fairness in binary classification
Indrė Žliobaitė
FaML
80
198
0
21 May 2015
Interpretable Classification Models for Recidivism Prediction
J. Zeng
Berk Ustun
Cynthia Rudin
FaML
106
247
0
26 Mar 2015
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
212
1,996
0
11 Dec 2014
Generative Adversarial Networks
Ian Goodfellow
Jean Pouget-Abadie
M. Berk Mirza
Bing Xu
David Warde-Farley
Sherjil Ozair
Aaron Courville
Yoshua Bengio
GAN
148
2,198
0
10 Jun 2014
Almost-everywhere algorithmic stability and generalization error
S. Kutin
P. Niyogi
107
173
0
12 Dec 2012
Previous
1
2
3