Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.03956
Cited By
Action Guidance: Getting the Best of Sparse Rewards and Shaped Rewards for Real-time Strategy Games
5 October 2020
Shengyi Huang
Santiago Ontañón
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Action Guidance: Getting the Best of Sparse Rewards and Shaped Rewards for Real-time Strategy Games"
8 / 8 papers shown
Title
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms
Shengyi Huang
Santiago Ontañón
59
316
0
25 Jun 2020
Mastering Complex Control in MOBA Games with Deep Reinforcement Learning
Deheng Ye
Zhao Liu
Mingfei Sun
Bei Shi
P. Zhao
...
Tengfei Shi
Liang Wang
Qiang Fu
Wei Yang
Lanxiao Huang
55
316
0
20 Dec 2019
Dota 2 with Large Scale Deep Reinforcement Learning
OpenAI OpenAI
:
Christopher Berner
Greg Brockman
Brooke Chan
...
Szymon Sidor
Ilya Sutskever
Jie Tang
Filip Wolski
Susan Zhang
GNN
VLM
CLL
AI4CE
LRM
155
1,822
0
13 Dec 2019
Learning by Playing - Solving Sparse Reward Tasks from Scratch
Martin Riedmiller
Roland Hafner
Thomas Lampe
Michael Neunert
Jonas Degrave
T. Wiele
Volodymyr Mnih
N. Heess
Jost Tobias Springenberg
85
448
0
28 Feb 2018
StarCraft II: A New Challenge for Reinforcement Learning
Oriol Vinyals
T. Ewalds
Sergey Bartunov
Petko Georgiev
A. Vezhnevets
...
Anthony Brunasso
David Lawrence
Anders Ekermo
J. Repp
Rodney Tsing
76
874
0
16 Aug 2017
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRM
SSL
106
2,436
0
15 May 2017
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
167
1,478
0
06 Jun 2016
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
214
5,075
0
05 Jun 2016
1