Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.03180
Cited By
Not All Datasets Are Born Equal: On Heterogeneous Data and Adversarial Examples
7 October 2020
Yael Mathov
Eden Levy
Ziv Katzir
A. Shabtai
Yuval Elovici
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Not All Datasets Are Born Equal: On Heterogeneous Data and Adversarial Examples"
9 / 9 papers shown
Title
Trustworthy Actionable Perturbations
Jesse Friedbaum
Sudarshan Adiga
Ravi Tandon
AAML
38
2
0
18 May 2024
Adversarial Robustness for Tabular Data through Cost and Utility Awareness
Klim Kireev
B. Kulynych
Carmela Troncoso
AAML
26
16
0
27 Aug 2022
On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against Realistic Adversarial Attacks
Salijona Dyrmishi
Salah Ghamizi
Thibault Simonetto
Yves Le Traon
Maxime Cordy
AAML
37
16
0
07 Feb 2022
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
47
650
0
05 Oct 2021
Feature Importance Guided Attack: A Model Agnostic Adversarial Attack
Gilad Gressel
Niranjan Hegde
A. Sreekumar
Rishikumar Radhakrishnan
Kalyani Harikumar
Michael C. Darling
Krishnashree Achuthan
AAML
67
16
0
28 Jun 2021
Adversarial Robustness with Non-uniform Perturbations
Ece Naz Erdemir
Jeffrey Bickford
Luca Melis
Sergul Aydore
AAML
24
26
0
24 Feb 2021
Adversarial Attacks for Tabular Data: Application to Fraud Detection and Imbalanced Data
F. Cartella
Orlando Anunciação
Yuki Funabiki
D. Yamaguchi
Toru Akishita
Olivier Elshocht
AAML
61
71
0
20 Jan 2021
Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data
Sergei Popov
S. Morozov
Artem Babenko
LMTD
91
296
0
13 Sep 2019
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
317
5,847
0
08 Jul 2016
1