ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.02556
25
1

SHERLock: Self-Supervised Hierarchical Event Representation Learning

6 October 2020
Sumegh Roychowdhury
S. Sontakke
Nikaash Puri
Mausoom Sarkar
Milan Aggarwal
Pinkesh Badjatiya
Balaji Krishnamurthy
Laurent Itti
    SSL
    DRL
ArXivPDFHTML
Abstract

Temporal event representations are an essential aspect of learning among humans. They allow for succinct encoding of the experiences we have through a variety of sensory inputs. Also, they are believed to be arranged hierarchically, allowing for an efficient representation of complex long-horizon experiences. Additionally, these representations are acquired in a self-supervised manner. Analogously, here we propose a model that learns temporal representations from long-horizon visual demonstration data and associated textual descriptions, without explicit temporal supervision. Our method produces a hierarchy of representations that align more closely with ground-truth human-annotated events (+15.3) than state-of-the-art unsupervised baselines. Our results are comparable to heavily-supervised baselines in complex visual domains such as Chess Openings, YouCook2 and TutorialVQA datasets. Finally, we perform ablation studies illustrating the robustness of our approach. We release our code and demo visualizations in the Supplementary Material.

View on arXiv
Comments on this paper