ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01917
  4. Cited By
Multi-Loss Sub-Ensembles for Accurate Classification with Uncertainty
  Estimation

Multi-Loss Sub-Ensembles for Accurate Classification with Uncertainty Estimation

5 October 2020
Omer Achrack
Raizy Kellerman
Ouriel Barzilay
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Multi-Loss Sub-Ensembles for Accurate Classification with Uncertainty Estimation"

7 / 7 papers shown
Title
TEDL: A Two-stage Evidential Deep Learning Method for Classification
  Uncertainty Quantification
TEDL: A Two-stage Evidential Deep Learning Method for Classification Uncertainty Quantification
Xue Li
Wei Shen
Denis Xavier Charles
UQCV
EDL
48
3
0
12 Sep 2022
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
59
1,111
0
07 Jul 2021
Deep Sub-Ensembles for Fast Uncertainty Estimation in Image
  Classification
Deep Sub-Ensembles for Fast Uncertainty Estimation in Image Classification
Matias Valdenegro-Toro
UQCV
64
51
0
17 Oct 2019
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
268
0
13 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
1