ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01848
  4. Cited By
Projection Efficient Subgradient Method and Optimal Nonsmooth
  Frank-Wolfe Method

Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method

5 October 2020
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
ArXiv (abs)PDFHTML

Papers citing "Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method"

24 / 24 papers shown
Title
Primal Methods for Variational Inequality Problems with Functional Constraints
Primal Methods for Variational Inequality Problems with Functional Constraints
Liang Zhang
Niao He
Michael Muehlebach
84
3
0
19 Mar 2024
Low-Rank Mirror-Prox for Nonsmooth and Low-Rank Matrix Optimization Problems
Low-Rank Mirror-Prox for Nonsmooth and Low-Rank Matrix Optimization Problems
Dan Garber
Atara Kaplan
72
0
0
23 Jun 2022
Low-Rank Extragradient Method for Nonsmooth and Low-Rank Matrix Optimization Problems
Low-Rank Extragradient Method for Nonsmooth and Low-Rank Matrix Optimization Problems
Dan Garber
Atara Kaplan
67
5
0
08 Feb 2022
Faster Projection-free Online Learning
Faster Projection-free Online Learning
Elad Hazan
Edgar Minasyan
88
59
0
30 Jan 2020
Efficient Projection-Free Online Methods with Stochastic Recursive
  Gradient
Efficient Projection-Free Online Methods with Stochastic Recursive Gradient
Jiahao Xie
Zebang Shen
Chao Zhang
Boyu Wang
Hui Qian
57
31
0
21 Oct 2019
Variance Reduction for Matrix Games
Variance Reduction for Matrix Games
Y. Carmon
Yujia Jin
Aaron Sidford
Kevin Tian
77
67
0
03 Jul 2019
Efficient Algorithms for Smooth Minimax Optimization
Efficient Algorithms for Smooth Minimax Optimization
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
92
191
0
02 Jul 2019
Towards Gradient Free and Projection Free Stochastic Optimization
Towards Gradient Free and Projection Free Stochastic Optimization
Anit Kumar Sahu
Manzil Zaheer
S. Kar
53
40
0
08 Oct 2018
Zeroth-order Nonconvex Stochastic Optimization: Handling Constraints,
  High-Dimensionality and Saddle-Points
Zeroth-order Nonconvex Stochastic Optimization: Handling Constraints, High-Dimensionality and Saddle-Points
Krishnakumar Balasubramanian
Saeed Ghadimi
ODL
60
101
0
17 Sep 2018
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
280
625
0
22 Sep 2016
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
64
140
0
27 Jul 2016
Convergence Rate of Frank-Wolfe for Non-Convex Objectives
Convergence Rate of Frank-Wolfe for Non-Convex Objectives
Simon Lacoste-Julien
85
195
0
01 Jul 2016
Stochastic Variance Reduction Methods for Saddle-Point Problems
Stochastic Variance Reduction Methods for Saddle-Point Problems
B. Palaniappan
Francis R. Bach
137
214
0
20 May 2016
Variance-Reduced and Projection-Free Stochastic Optimization
Variance-Reduced and Projection-Free Stochastic Optimization
Elad Hazan
Haipeng Luo
61
166
0
05 Feb 2016
Unsupervised Learning from Narrated Instruction Videos
Unsupervised Learning from Narrated Instruction Videos
Jean-Baptiste Alayrac
Piotr Bojanowski
Nishant Agrawal
Josef Sivic
Ivan Laptev
Simon Lacoste-Julien
SSL
86
289
0
30 Jun 2015
Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets
Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets
Dan Garber
Elad Hazan
113
196
0
05 Jun 2014
Gradient Sliding for Composite Optimization
Gradient Sliding for Composite Optimization
Guanghui Lan
160
68
0
04 Jun 2014
Conditional Gradient Algorithms for Norm-Regularized Smooth Convex
  Optimization
Conditional Gradient Algorithms for Norm-Regularized Smooth Convex Optimization
Zaïd Harchaoui
A. Juditsky
A. Nemirovski
109
189
0
10 Feb 2013
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark Schmidt
Francis R. Bach
187
261
0
10 Dec 2012
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
160
576
0
08 Dec 2012
Duality between subgradient and conditional gradient methods
Duality between subgradient and conditional gradient methods
Francis R. Bach
128
99
0
27 Nov 2012
Convergence Rates of Inexact Proximal-Gradient Methods for Convex
  Optimization
Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
215
584
0
12 Sep 2011
Optimization with Sparsity-Inducing Penalties
Optimization with Sparsity-Inducing Penalties
Francis R. Bach
Rodolphe Jenatton
Julien Mairal
G. Obozinski
223
1,058
0
03 Aug 2011
Randomized Smoothing for Stochastic Optimization
Randomized Smoothing for Stochastic Optimization
John C. Duchi
Peter L. Bartlett
Martin J. Wainwright
106
288
0
22 Mar 2011
1