Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01470
Cited By
v1
v2
v3 (latest)
User Fairness, Item Fairness, and Diversity for Rankings in Two-Sided Markets
4 October 2020
Lequn Wang
Thorsten Joachims
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"User Fairness, Item Fairness, and Diversity for Rankings in Two-Sided Markets"
21 / 21 papers shown
Title
Policy Design for Two-sided Platforms with Participation Dynamics
Haruka Kiyohara
Fan Yao
Sarah Dean
181
2
0
03 Feb 2025
A Framework for Fairness in Two-Sided Marketplaces
Kinjal Basu
Cyrus DiCiccio
Heloise Logan
N. Karoui
FaML
59
17
0
23 Jun 2020
Controlling Fairness and Bias in Dynamic Learning-to-Rank
Marco Morik
Ashudeep Singh
Jessica Hong
Thorsten Joachims
66
212
0
29 May 2020
FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms
Gourab K. Patro
Arpita Biswas
Niloy Ganguly
Krishna P. Gummadi
Abhijnan Chakraborty
FaML
78
233
0
25 Feb 2020
Interventions for Ranking in the Presence of Implicit Bias
L. E. Celis
Anay Mehrotra
Nisheeth K. Vishnoi
73
65
0
23 Jan 2020
Pairwise Fairness for Ranking and Regression
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
S. Wang
83
115
0
12 Jun 2019
Revenue, Relevance, Arbitrage and More: Joint Optimization Framework for Search Experiences in Two-Sided Marketplaces
Andrew Stanton
Akhila Ananthram
Congzhe Su
Liangjie Hong
131
4
0
15 May 2019
Fairness-Aware Ranking in Search & Recommendation Systems with Application to LinkedIn Talent Search
S. Geyik
Stuart Ambler
K. Kenthapadi
101
384
0
30 Apr 2019
Fairness in Recommendation Ranking through Pairwise Comparisons
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Li Wei
...
Lukasz Heldt
Zhe Zhao
Lichan Hong
Ed H. Chi
Cristos Goodrow
FaML
114
381
0
02 Mar 2019
The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the xAUC Metric
Nathan Kallus
Angela Zhou
100
76
0
15 Feb 2019
Policy Learning for Fairness in Ranking
Ashudeep Singh
Thorsten Joachims
OffRL
90
219
0
11 Feb 2019
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
258
773
0
13 Dec 2018
Fighting Fire with Fire: Using Antidote Data to Improve Polarization and Fairness of Recommender Systems
Bashir Rastegarpanah
Krishna P. Gummadi
M. Crovella
75
119
0
02 Dec 2018
A Reductions Approach to Fair Classification
Alekh Agarwal
A. Beygelzimer
Miroslav Dudík
John Langford
Hanna M. Wallach
FaML
230
1,105
0
06 Mar 2018
Beyond Parity: Fairness Objectives for Collaborative Filtering
Sirui Yao
Bert Huang
FaML
45
367
0
24 May 2017
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
302
2,131
0
24 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
236
4,341
0
07 Oct 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
122
1,783
0
19 Sep 2016
Unbiased Learning-to-Rank with Biased Feedback
Thorsten Joachims
Adith Swaminathan
Tobias Schnabel
CML
95
541
0
16 Aug 2016
Counterfactual Reasoning and Learning Systems
Léon Bottou
J. Peters
J. Q. Candela
Denis Xavier Charles
D. M. Chickering
Elon Portugaly
Dipankar Ray
Patrice Y. Simard
Edward Snelson
CML
OffRL
402
787
0
11 Sep 2012
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
272
1,140
0
25 Jul 2012
1