Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01449
Cited By
Quickly Finding a Benign Region via Heavy Ball Momentum in Non-Convex Optimization
4 October 2020
Jun-Kun Wang
Jacob D. Abernethy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quickly Finding a Benign Region via Heavy Ball Momentum in Non-Convex Optimization"
49 / 49 papers shown
Title
Escaping Saddle Points Faster with Stochastic Momentum
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
ODL
42
22
0
05 Jun 2021
Global Convergence of Second-order Dynamics in Two-layer Neural Networks
Walid Krichene
Kenneth F. Caluya
A. Halder
MLT
14
5
0
14 Jul 2020
Robust Recovery via Implicit Bias of Discrepant Learning Rates for Double Over-parameterization
Chong You
Zhihui Zhu
Qing Qu
Yi-An Ma
12
42
0
16 Jun 2020
Almost sure convergence rates for Stochastic Gradient Descent and Stochastic Heavy Ball
Othmane Sebbouh
Robert Mansel Gower
Aaron Defazio
31
22
0
14 Jun 2020
Complex Dynamics in Simple Neural Networks: Understanding Gradient Flow in Phase Retrieval
Stefano Sarao Mannelli
Giulio Biroli
C. Cammarota
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
20
28
0
12 Jun 2020
The Effects of Mild Over-parameterization on the Optimization Landscape of Shallow ReLU Neural Networks
Itay Safran
Gilad Yehudai
Ohad Shamir
103
34
0
01 Jun 2020
Understanding the Role of Momentum in Stochastic Gradient Methods
Igor Gitman
Hunter Lang
Pengchuan Zhang
Lin Xiao
38
94
0
30 Oct 2019
Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
Oliver Hinder
Aaron Sidford
N. Sohoni
31
71
0
27 Jun 2019
Generalized Momentum-Based Methods: A Hamiltonian Perspective
Jelena Diakonikolas
Michael I. Jordan
27
57
0
02 Jun 2019
Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks
Gauthier Gidel
Francis R. Bach
Simon Lacoste-Julien
AI4CE
40
153
0
30 Apr 2019
On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points
Chi Jin
Praneeth Netrapalli
Rong Ge
Sham Kakade
Michael I. Jordan
65
61
0
13 Feb 2019
Sharp Analysis for Nonconvex SGD Escaping from Saddle Points
Cong Fang
Zhouchen Lin
Tong Zhang
50
104
0
01 Feb 2019
Escaping Saddle Points with Adaptive Gradient Methods
Matthew Staib
Sashank J. Reddi
Satyen Kale
Sanjiv Kumar
S. Sra
ODL
37
74
0
26 Jan 2019
Accelerated Linear Convergence of Stochastic Momentum Methods in Wasserstein Distances
Bugra Can
Mert Gurbuzbalaban
Lingjiong Zhu
43
44
0
22 Jan 2019
Non-ergodic Convergence Analysis of Heavy-Ball Algorithms
Tao Sun
Penghang Yin
Dongsheng Li
Chun Huang
Lei Guan
Hao Jiang
17
46
0
05 Nov 2018
Accelerated Gossip via Stochastic Heavy Ball Method
Nicolas Loizou
Peter Richtárik
17
27
0
23 Sep 2018
Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
39
235
0
21 Mar 2018
Escaping Saddles with Stochastic Gradients
Hadi Daneshmand
Jonas Köhler
Aurelien Lucchi
Thomas Hofmann
47
162
0
15 Mar 2018
On the insufficiency of existing momentum schemes for Stochastic Optimization
Rahul Kidambi
Praneeth Netrapalli
Prateek Jain
Sham Kakade
ODL
60
118
0
15 Mar 2018
Nonconvex Matrix Factorization from Rank-One Measurements
Yuanxin Li
Cong Ma
Yuxin Chen
Yuejie Chi
39
51
0
17 Feb 2018
An Alternative View: When Does SGD Escape Local Minima?
Robert D. Kleinberg
Yuanzhi Li
Yang Yuan
MLT
41
316
0
17 Feb 2018
Optimization-based AMP for Phase Retrieval: The Impact of Initialization and
ℓ
2
\ell_2
ℓ
2
-regularization
Junjie Ma
Ji Xu
A. Maleki
63
53
0
03 Jan 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
53
200
0
27 Dec 2017
Convolutional Phase Retrieval via Gradient Descent
Qing Qu
Yuqian Zhang
Yonina C. Eldar
John N. Wright
68
29
0
03 Dec 2017
Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution
Cong Ma
Kaizheng Wang
Yuejie Chi
Yuxin Chen
42
240
0
28 Nov 2017
Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent
Chi Jin
Praneeth Netrapalli
Michael I. Jordan
ODL
51
261
0
28 Nov 2017
Neon2: Finding Local Minima via First-Order Oracles
Zeyuan Allen-Zhu
Yuanzhi Li
49
130
0
17 Nov 2017
First-order Stochastic Algorithms for Escaping From Saddle Points in Almost Linear Time
Yi Tian Xu
Rong Jin
Tianbao Yang
ODL
39
116
0
03 Nov 2017
A Generic Approach for Escaping Saddle points
Sashank J. Reddi
Manzil Zaheer
S. Sra
Barnabás Póczós
Francis R. Bach
Ruslan Salakhutdinov
Alex Smola
79
83
0
05 Sep 2017
Gradient Descent Can Take Exponential Time to Escape Saddle Points
S. Du
Chi Jin
Jason D. Lee
Michael I. Jordan
Barnabás Póczós
Aarti Singh
37
244
0
29 May 2017
Convergence Analysis of Two-layer Neural Networks with ReLU Activation
Yuanzhi Li
Yang Yuan
MLT
62
649
0
28 May 2017
Implicit Regularization in Matrix Factorization
Suriya Gunasekar
Blake E. Woodworth
Srinadh Bhojanapalli
Behnam Neyshabur
Nathan Srebro
52
490
0
25 May 2017
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Elad Hoffer
Itay Hubara
Daniel Soudry
ODL
134
798
0
24 May 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
41
1,023
0
23 May 2017
Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval
John C. Duchi
Feng Ruan
26
165
0
05 May 2017
How to Escape Saddle Points Efficiently
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
128
834
0
02 Mar 2017
The Power of Normalization: Faster Evasion of Saddle Points
Kfir Y. Levy
44
108
0
15 Nov 2016
Stochastic Heavy Ball
S. Gadat
Fabien Panloup
Sofiane Saadane
78
102
0
14 Sep 2016
Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow
G. Wang
G. Giannakis
Yonina C. Eldar
28
362
0
26 May 2016
Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization
Tianbao Yang
Qihang Lin
Zhe Li
41
121
0
12 Apr 2016
A Geometric Analysis of Phase Retrieval
Ju Sun
Qing Qu
John N. Wright
43
524
0
22 Feb 2016
The local convexity of solving systems of quadratic equations
Christopher D. White
Sujay Sanghavi
Rachel A. Ward
31
72
0
25 Jun 2015
A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements
Qinqing Zheng
John D. Lafferty
36
186
0
19 Jun 2015
Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow
T. Tony Cai
Xiaodong Li
Zongming Ma
50
232
0
10 Jun 2015
Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems
Yuxin Chen
Emmanuel J. Candes
43
589
0
19 May 2015
From Averaging to Acceleration, There is Only a Step-size
Nicolas Flammarion
Francis R. Bach
67
138
0
07 Apr 2015
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
107
1,056
0
06 Mar 2015
Phase Retrieval via Wirtinger Flow: Theory and Algorithms
Emmanuel Candes
Xiaodong Li
Mahdi Soltanolkotabi
101
1,282
0
03 Jul 2014
Phase Retrieval using Alternating Minimization
Praneeth Netrapalli
Prateek Jain
Sujay Sanghavi
134
632
0
02 Jun 2013
1