Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01092
Cited By
On the linearity of large non-linear models: when and why the tangent kernel is constant
2 October 2020
Chaoyue Liu
Libin Zhu
M. Belkin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the linearity of large non-linear models: when and why the tangent kernel is constant"
50 / 98 papers shown
Title
Ultra-fast feature learning for the training of two-layer neural networks in the two-timescale regime
Raphael Barboni
Gabriel Peyré
François-Xavier Vialard
MLT
34
0
0
25 Apr 2025
Divergence of Empirical Neural Tangent Kernel in Classification Problems
Zixiong Yu
Songtao Tian
Guhan Chen
23
0
0
15 Apr 2025
Globally Convergent Variational Inference
Declan McNamara
J. Loper
Jeffrey Regier
53
0
0
14 Jan 2025
Infinite Width Limits of Self Supervised Neural Networks
Maximilian Fleissner
Gautham Govind Anil
D. Ghoshdastidar
SSL
145
0
0
17 Nov 2024
Sharper Guarantees for Learning Neural Network Classifiers with Gradient Methods
Hossein Taheri
Christos Thrampoulidis
Arya Mazumdar
MLT
33
0
0
13 Oct 2024
NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous Settings via Neural Tangent Kernel
Gabriel Thompson
Kai Yue
Chau-Wai Wong
H. Dai
FedML
13
0
0
02 Oct 2024
Peer-to-Peer Learning Dynamics of Wide Neural Networks
Shreyas Chaudhari
Srinivasa Pranav
Emile Anand
José M. F. Moura
37
3
0
23 Sep 2024
Variational Search Distributions
Daniel M. Steinberg
Rafael Oliveira
Cheng Soon Ong
Edwin V. Bonilla
33
0
0
10 Sep 2024
Continual learning with the neural tangent ensemble
Ari S. Benjamin
Christian Pehle
Kyle Daruwalla
UQCV
67
0
0
30 Aug 2024
Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks
Lukas Gosch
Mahalakshmi Sabanayagam
D. Ghoshdastidar
Stephan Günnemann
AAML
38
3
0
15 Jul 2024
Simplifying Deep Temporal Difference Learning
Matteo Gallici
Mattie Fellows
Benjamin Ellis
B. Pou
Ivan Masmitja
Jakob Foerster
Mario Martin
OffRL
59
14
0
05 Jul 2024
Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum
H. Cai
Sulaiman A. Alghunaim
Ali H.Sayed
43
1
0
18 Jun 2024
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
A. Banerjee
Qiaobo Li
Yingxue Zhou
44
0
0
11 Jun 2024
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
47
8
0
05 Jun 2024
Scalable Optimization in the Modular Norm
Tim Large
Yang Liu
Minyoung Huh
Hyojin Bahng
Phillip Isola
Jeremy Bernstein
44
12
0
23 May 2024
Bounds for the smallest eigenvalue of the NTK for arbitrary spherical data of arbitrary dimension
Kedar Karhadkar
Michael Murray
Guido Montúfar
34
2
0
23 May 2024
An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks
Zhifa Ke
Zaiwen Wen
Junyu Zhang
29
0
0
07 May 2024
Physics-Informed Neural Networks: Minimizing Residual Loss with Wide Networks and Effective Activations
Nima Hosseini Dashtbayaz
G. Farhani
Boyu Wang
Charles X. Ling
26
1
0
02 May 2024
Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
37
3
0
19 Mar 2024
When can we Approximate Wide Contrastive Models with Neural Tangent Kernels and Principal Component Analysis?
Gautham Govind Anil
P. Esser
D. Ghoshdastidar
40
1
0
13 Mar 2024
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach
Lingyu Gu
Yongqiang Du
Yuan Zhang
Di Xie
Shiliang Pu
Robert C. Qiu
Zhenyu Liao
36
6
0
01 Mar 2024
The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks
Andrea Bonfanti
Giuseppe Bruno
Cristina Cipriani
29
7
0
06 Feb 2024
Challenges in Training PINNs: A Loss Landscape Perspective
Pratik Rathore
Weimu Lei
Zachary Frangella
Lu Lu
Madeleine Udell
AI4CE
PINN
ODL
33
39
0
02 Feb 2024
Weak Correlations as the Underlying Principle for Linearization of Gradient-Based Learning Systems
Ori Shem-Ur
Yaron Oz
14
0
0
08 Jan 2024
On the Performance of Temporal Difference Learning With Neural Networks
Haoxing Tian
I. Paschalidis
Alexander Olshevsky
16
5
0
08 Dec 2023
GGNNs : Generalizing GNNs using Residual Connections and Weighted Message Passing
Abhinav Raghuvanshi
K. Malleshappa
AI4CE
GNN
29
0
0
26 Nov 2023
On the Convergence of Encoder-only Shallow Transformers
Yongtao Wu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
42
5
0
02 Nov 2023
Efficient kernel surrogates for neural network-based regression
S. Qadeer
A. Engel
Amanda A. Howard
Adam Tsou
Max Vargas
P. Stinis
Tony Chiang
13
5
0
28 Oct 2023
On the Optimization and Generalization of Multi-head Attention
Puneesh Deora
Rouzbeh Ghaderi
Hossein Taheri
Christos Thrampoulidis
MLT
44
33
0
19 Oct 2023
Neural Tangent Kernels Motivate Graph Neural Networks with Cross-Covariance Graphs
Shervin Khalafi
Saurabh Sihag
Alejandro Ribeiro
18
0
0
16 Oct 2023
An operator preconditioning perspective on training in physics-informed machine learning
Tim De Ryck
Florent Bonnet
Siddhartha Mishra
Emmanuel de Bezenac
AI4CE
39
14
0
09 Oct 2023
Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth Soft-Thresholding
Shaik Basheeruddin Shah
Pradyumna Pradhan
Wei Pu
Ramunaidu Randhi
Miguel R. D. Rodrigues
Yonina C. Eldar
22
4
0
12 Sep 2023
Non-Parametric Representation Learning with Kernels
P. Esser
Maximilian Fleissner
D. Ghoshdastidar
SSL
27
4
0
05 Sep 2023
Representation Learning Dynamics of Self-Supervised Models
P. Esser
Satyaki Mukherjee
D. Ghoshdastidar
SSL
19
2
0
05 Sep 2023
Six Lectures on Linearized Neural Networks
Theodor Misiakiewicz
Andrea Montanari
34
12
0
25 Aug 2023
Modify Training Directions in Function Space to Reduce Generalization Error
Yi Yu
Wenlian Lu
Boyu Chen
24
0
0
25 Jul 2023
Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space
Zhengdao Chen
41
1
0
03 Jul 2023
Catapults in SGD: spikes in the training loss and their impact on generalization through feature learning
Libin Zhu
Chaoyue Liu
Adityanarayanan Radhakrishnan
M. Belkin
30
13
0
07 Jun 2023
Aiming towards the minimizers: fast convergence of SGD for overparametrized problems
Chaoyue Liu
D. Drusvyatskiy
M. Belkin
Damek Davis
Yi-An Ma
ODL
20
16
0
05 Jun 2023
On Emergence of Clean-Priority Learning in Early Stopped Neural Networks
Chaoyue Liu
Amirhesam Abedsoltan
M. Belkin
NoLa
17
4
0
05 Jun 2023
Unifying GANs and Score-Based Diffusion as Generative Particle Models
Jean-Yves Franceschi
Mike Gartrell
Ludovic Dos Santos
Thibaut Issenhuth
Emmanuel de Bezenac
Mickaël Chen
A. Rakotomamonjy
DiffM
18
20
0
25 May 2023
ReLU soothes the NTK condition number and accelerates optimization for wide neural networks
Chaoyue Liu
Like Hui
MLT
22
9
0
15 May 2023
Graph Neural Tangent Kernel: Convergence on Large Graphs
Sanjukta Krishnagopal
Luana Ruiz
28
8
0
25 Jan 2023
Convergence beyond the over-parameterized regime using Rayleigh quotients
David A. R. Robin
Kevin Scaman
Marc Lelarge
25
3
0
19 Jan 2023
Mechanism of feature learning in deep fully connected networks and kernel machines that recursively learn features
Adityanarayanan Radhakrishnan
Daniel Beaglehole
Parthe Pandit
M. Belkin
FAtt
MLT
29
11
0
28 Dec 2022
The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for Deep Quantum Machine Learning
Massimiliano Incudini
Michele Grossi
Antonio Mandarino
S. Vallecorsa
Alessandra Di Pierro
David Windridge
31
6
0
22 Dec 2022
Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs
Chenxiao Yang
Qitian Wu
Jiahua Wang
Junchi Yan
AI4CE
19
51
0
18 Dec 2022
Transfer Learning with Kernel Methods
Adityanarayanan Radhakrishnan
Max Ruiz Luyten
Neha Prasad
Caroline Uhler
14
18
0
01 Nov 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
23
5
0
20 Oct 2022
Analysis of Convolutions, Non-linearity and Depth in Graph Neural Networks using Neural Tangent Kernel
Mahalakshmi Sabanayagam
P. Esser
D. Ghoshdastidar
31
2
0
18 Oct 2022
1
2
Next