ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.00525
  4. Cited By
A biologically plausible neural network for multi-channel Canonical
  Correlation Analysis

A biologically plausible neural network for multi-channel Canonical Correlation Analysis

1 October 2020
David Lipshutz
Yanis Bahroun
Siavash Golkar
Anirvan M. Sengupta
Dmitri B. Chkovskii
ArXivPDFHTML

Papers citing "A biologically plausible neural network for multi-channel Canonical Correlation Analysis"

4 / 4 papers shown
Title
Correlative Information Maximization: A Biologically Plausible Approach
  to Supervised Deep Neural Networks without Weight Symmetry
Correlative Information Maximization: A Biologically Plausible Approach to Supervised Deep Neural Networks without Weight Symmetry
Bariscan Bozkurt
Cengiz Pehlevan
A. Erdogan
37
1
0
07 Jun 2023
An online algorithm for contrastive Principal Component Analysis
An online algorithm for contrastive Principal Component Analysis
Siavash Golkar
David Lipshutz
Tiberiu Teşileanu
D. Chklovskii
29
4
0
14 Nov 2022
Interneurons accelerate learning dynamics in recurrent neural networks
  for statistical adaptation
Interneurons accelerate learning dynamics in recurrent neural networks for statistical adaptation
David Lipshutz
Cengiz Pehlevan
D. Chklovskii
25
11
0
21 Sep 2022
A biologically plausible neural network for Slow Feature Analysis
A biologically plausible neural network for Slow Feature Analysis
David Lipshutz
Charlie Windolf
Siavash Golkar
D. Chklovskii
43
16
0
23 Oct 2020
1