ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.00406
  4. Cited By
Momentum via Primal Averaging: Theoretical Insights and Learning Rate
  Schedules for Non-Convex Optimization

Momentum via Primal Averaging: Theoretical Insights and Learning Rate Schedules for Non-Convex Optimization

1 October 2020
Aaron Defazio
ArXivPDFHTML

Papers citing "Momentum via Primal Averaging: Theoretical Insights and Learning Rate Schedules for Non-Convex Optimization"

14 / 14 papers shown
Title
Almost sure convergence rates for Stochastic Gradient Descent and
  Stochastic Heavy Ball
Almost sure convergence rates for Stochastic Gradient Descent and Stochastic Heavy Ball
Othmane Sebbouh
Robert Mansel Gower
Aaron Defazio
34
22
0
14 Jun 2020
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth
  Non-Convex Optimization
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth Non-Convex Optimization
Vien V. Mai
M. Johansson
26
55
0
13 Feb 2020
Momentum Improves Normalized SGD
Momentum Improves Normalized SGD
Ashok Cutkosky
Harsh Mehta
ODL
55
122
0
09 Feb 2020
On the Linear Speedup Analysis of Communication Efficient Momentum SGD
  for Distributed Non-Convex Optimization
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization
Hao Yu
Rong Jin
Sen Yang
FedML
61
381
0
09 May 2019
Accelerated Linear Convergence of Stochastic Momentum Methods in
  Wasserstein Distances
Accelerated Linear Convergence of Stochastic Momentum Methods in Wasserstein Distances
Bugra Can
Mert Gurbuzbalaban
Lingjiong Zhu
46
44
0
22 Jan 2019
On the Curved Geometry of Accelerated Optimization
On the Curved Geometry of Accelerated Optimization
Aaron Defazio
85
25
0
11 Dec 2018
A Unified Analysis of Stochastic Momentum Methods for Deep Learning
A Unified Analysis of Stochastic Momentum Methods for Deep Learning
Yan Yan
Tianbao Yang
Zhe Li
Qihang Lin
Yi Yang
20
119
0
30 Aug 2018
On the insufficiency of existing momentum schemes for Stochastic
  Optimization
On the insufficiency of existing momentum schemes for Stochastic Optimization
Rahul Kidambi
Praneeth Netrapalli
Prateek Jain
Sham Kakade
ODL
63
118
0
15 Mar 2018
Stochastic Heavy Ball
Stochastic Heavy Ball
S. Gadat
Fabien Panloup
Sofiane Saadane
80
102
0
14 Sep 2016
Unified Convergence Analysis of Stochastic Momentum Methods for Convex
  and Non-convex Optimization
Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization
Tianbao Yang
Qihang Lin
Zhe Li
44
121
0
12 Apr 2016
On the Influence of Momentum Acceleration on Online Learning
On the Influence of Momentum Acceleration on Online Learning
Kun Yuan
Bicheng Ying
Ali H. Sayed
49
58
0
14 Mar 2016
From Averaging to Acceleration, There is Only a Step-size
From Averaging to Acceleration, There is Only a Step-size
Nicolas Flammarion
Francis R. Bach
72
138
0
07 Apr 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.0K
39,383
0
01 Sep 2014
Stochastic Gradient Descent, Weighted Sampling, and the Randomized
  Kaczmarz algorithm
Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm
Deanna Needell
Nathan Srebro
Rachel A. Ward
94
551
0
21 Oct 2013
1