Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.14397
Cited By
Deep Equals Shallow for ReLU Networks in Kernel Regimes
30 September 2020
A. Bietti
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Equals Shallow for ReLU Networks in Kernel Regimes"
44 / 44 papers shown
Title
Spectral complexity of deep neural networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
Stefano Vigogna
BDL
103
2
0
15 May 2024
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
122
94
0
22 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
Jason D. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
56
43
0
21 Sep 2020
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
115
94
0
03 Jul 2020
Towards Understanding Hierarchical Learning: Benefits of Neural Representations
Minshuo Chen
Yu Bai
Jason D. Lee
T. Zhao
Huan Wang
Caiming Xiong
R. Socher
SSL
66
49
0
24 Jun 2020
Training (Overparametrized) Neural Networks in Near-Linear Time
Jan van den Brand
Binghui Peng
Zhao Song
Omri Weinstein
ODL
55
83
0
20 Jun 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
105
73
0
25 May 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
75
184
0
10 Mar 2020
A Spectral Analysis of Dot-product Kernels
M. Scetbon
Zaïd Harchaoui
383
2
0
28 Feb 2020
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
95
218
0
03 Dec 2019
On the Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels
Tengyuan Liang
Alexander Rakhlin
Xiyu Zhai
61
29
0
27 Aug 2019
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
76
113
0
24 Jul 2019
Quadratic Suffices for Over-parametrization via Matrix Chernoff Bound
Zhao Song
Xin Yang
60
91
0
09 Jun 2019
The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies
Ronen Basri
David Jacobs
Yoni Kasten
S. Kritchman
64
218
0
02 Jun 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
83
259
0
29 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
54
243
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
223
925
0
26 Apr 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
199
972
0
24 Jan 2019
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
111
835
0
19 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
185
448
0
21 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
186
773
0
12 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
247
1,463
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
201
1,135
0
09 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
219
1,272
0
04 Oct 2018
Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data
Yuanzhi Li
Yingyu Liang
MLT
216
652
0
03 Aug 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
267
3,203
0
20 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
204
735
0
24 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
144
559
0
30 Apr 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
91
858
0
18 Apr 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
60
419
0
05 Feb 2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
125
1,093
0
01 Nov 2017
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
225
810
0
22 Aug 2017
Depth Separation for Neural Networks
Amit Daniely
MDE
37
74
0
27 Feb 2017
Diverse Neural Network Learns True Target Functions
Bo Xie
Yingyu Liang
Le Song
169
138
0
09 Nov 2016
Error bounds for approximations with deep ReLU networks
Dmitry Yarotsky
195
1,227
0
03 Oct 2016
Deep vs. shallow networks : An approximation theory perspective
H. Mhaskar
T. Poggio
165
341
0
10 Aug 2016
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity
Amit Daniely
Roy Frostig
Y. Singer
163
343
0
18 Feb 2016
Benefits of depth in neural networks
Matus Telgarsky
356
608
0
14 Feb 2016
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
68
331
0
14 Feb 2016
The Power of Depth for Feedforward Neural Networks
Ronen Eldan
Ohad Shamir
216
732
0
12 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
323
18,625
0
06 Feb 2015
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
182
706
0
30 Dec 2014
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
158
282
0
09 Aug 2012
The spectrum of kernel random matrices
N. Karoui
154
224
0
04 Jan 2010
1