ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13180
  4. Cited By
CASTLE: Regularization via Auxiliary Causal Graph Discovery

CASTLE: Regularization via Auxiliary Causal Graph Discovery

28 September 2020
Trent Kyono
Yao Zhang
M. Schaar
    OOD
    CML
ArXivPDFHTML

Papers citing "CASTLE: Regularization via Auxiliary Causal Graph Discovery"

23 / 23 papers shown
Title
Boosting Causal Additive Models
Boosting Causal Additive Models
Maximilian Kertel
Nadja Klein
52
0
0
12 Jan 2024
Online Handbook of Argumentation for AI: Volume 4
Online Handbook of Argumentation for AI: Volume 4
Lars Bengel
Lydia Blümel
Elfia Bezou-Vrakatseli
Federico Castagna
Giulia DÁgostino
...
Daphne Odekerken
Fabrizio Russo
Stefan Sarkadi
Madeleine Waller
A. Xydis
43
0
0
20 Dec 2023
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
56
2
0
19 Dec 2023
Enhancing the Performance of Neural Networks Through Causal Discovery
  and Integration of Domain Knowledge
Enhancing the Performance of Neural Networks Through Causal Discovery and Integration of Domain Knowledge
Xiaoge Zhang
Xiao-Lin Wang
Fenglei Fan
Yiu-ming Cheung
Indranil Bose
51
1
0
29 Nov 2023
Towards Learning and Explaining Indirect Causal Effects in Neural
  Networks
Towards Learning and Explaining Indirect Causal Effects in Neural Networks
Abbaavaram Gowtham Reddy
Saketh Bachu
Harsh Nilesh Pathak
Ben Godfrey
V. Balasubramanian
V. Varshaneya
Satya Narayanan Kar
CML
36
1
0
24 Mar 2023
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
An Zhang
Fang Liu
Wenchang Ma
Zhibo Cai
Xiang Wang
Tat-Seng Chua
CML
53
5
0
06 Mar 2023
Causal Deep Learning
Causal Deep Learning
Jeroen Berrevoets
Krzysztof Kacprzyk
Zhaozhi Qian
M. Schaar
CML
AI4CE
26
25
0
03 Mar 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
32
1
0
16 Jan 2023
Navigating causal deep learning
Navigating causal deep learning
Jeroen Berrevoets
Krzysztof Kacprzyk
Zhaozhi Qian
M. Schaar
CML
46
2
0
01 Dec 2022
Neural Bayesian Network Understudy
Neural Bayesian Network Understudy
Paloma Rabaey
Cedric De Boom
Thomas Demeester
BDL
CML
38
0
0
15 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
51
11
0
07 Nov 2022
GFlowCausal: Generative Flow Networks for Causal Discovery
GFlowCausal: Generative Flow Networks for Causal Discovery
Wenqian Li
Yinchuan Li
Shengyu Zhu
Yunfeng Shao
Jianye Hao
Yan Pang
BDL
CML
16
12
0
15 Oct 2022
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity
  Characterization
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
66
79
0
16 Sep 2022
TabPFN: A Transformer That Solves Small Tabular Classification Problems
  in a Second
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second
Noah Hollmann
Samuel G. Müller
Katharina Eggensperger
Frank Hutter
43
270
0
05 Jul 2022
Invariant Structure Learning for Better Generalization and Causal
  Explainability
Invariant Structure Learning for Better Generalization and Causal Explainability
Yunhao Ge
Sercan O. Arik
Jinsung Yoon
Ao Xu
Laurent Itti
Tomas Pfister
OOD
CML
40
2
0
13 Jun 2022
On the Generalization and Adaption Performance of Causal Models
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
44
8
0
09 Jun 2022
Matching Learned Causal Effects of Neural Networks with Domain Priors
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
41
13
0
24 Nov 2021
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
Trent Kyono
Yao Zhang
Alexis Bellot
M. Schaar
CML
49
61
0
04 Nov 2021
Unsuitability of NOTEARS for Causal Graph Discovery
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
57
65
0
12 Apr 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
52
297
0
03 Mar 2021
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric Xing
CML
119
257
0
29 Sep 2019
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
316
2,904
0
15 Sep 2016
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
270
7,641
0
03 Jul 2012
1