Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.11848
Cited By
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
24 September 2020
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks"
22 / 72 papers shown
Title
Deep Extrapolation for Attribute-Enhanced Generation
Alvin Chan
Ali Madani
Ben Krause
Nikhil Naik
24
24
0
07 Jul 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
34
17
0
04 Jul 2021
Pre-Trained Models: Past, Present and Future
Xu Han
Zhengyan Zhang
Ning Ding
Yuxian Gu
Xiao Liu
...
Jie Tang
Ji-Rong Wen
Jinhui Yuan
Wayne Xin Zhao
Jun Zhu
AIFin
MQ
AI4MH
40
815
0
14 Jun 2021
Learning to Pool in Graph Neural Networks for Extrapolation
Jihoon Ko
Taehyung Kwon
Kijung Shin
Juho Lee
21
6
0
11 Jun 2021
GANTL: Towards Practical and Real-Time Topology Optimization with Conditional GANs and Transfer Learning
M. Behzadi
H. Ilies
AI4CE
22
18
0
07 May 2021
Domain Generalization with MixStyle
Kaiyang Zhou
Yongxin Yang
Yu Qiao
Tao Xiang
71
744
0
05 Apr 2021
On the Equivalence Between Temporal and Static Graph Representations for Observational Predictions
Jianfei Gao
Bruno Ribeiro
29
11
0
12 Mar 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
35
108
0
08 Mar 2021
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OOD
AI4CE
75
980
0
03 Mar 2021
Uncertainty Quantification by Ensemble Learning for Computational Optical Form Measurements
L. Hoffmann
I. Fortmeier
Clemens Elster
UQCV
25
28
0
01 Mar 2021
Persistent Message Passing
Heiko Strathmann
M. Barekatain
Charles Blundell
Petar Velickovic
33
15
0
01 Mar 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
347
0
18 Feb 2021
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
31
60
0
27 Jan 2021
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
38
79
0
30 Oct 2020
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
172
123
0
17 Oct 2020
Information Obfuscation of Graph Neural Networks
Peiyuan Liao
Han Zhao
Keyulu Xu
Tommi Jaakkola
Geoffrey J. Gordon
Stefanie Jegelka
Ruslan Salakhutdinov
AAML
23
34
0
28 Sep 2020
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
GNN
32
158
0
07 Sep 2020
Self-supervised Learning: Generative or Contrastive
Xiao Liu
Fanjin Zhang
Zhenyu Hou
Zhaoyu Wang
Li Mian
Jing Zhang
Jie Tang
SSL
50
1,586
0
15 Jun 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
279
1,944
0
09 Jun 2018
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
280
1,401
0
01 Dec 2016
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
179
790
0
19 Feb 2009
Previous
1
2