ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.11839
  4. Cited By
A Gradient Flow Framework For Analyzing Network Pruning

A Gradient Flow Framework For Analyzing Network Pruning

24 September 2020
Ekdeep Singh Lubana
Robert P. Dick
ArXivPDFHTML

Papers citing "A Gradient Flow Framework For Analyzing Network Pruning"

12 / 12 papers shown
Title
Neuroplasticity in Artificial Intelligence -- An Overview and Inspirations on Drop In & Out Learning
Neuroplasticity in Artificial Intelligence -- An Overview and Inspirations on Drop In & Out Learning
Yupei Li
M. Milling
Björn Schuller
AI4CE
107
0
0
27 Mar 2025
Straightforward Layer-wise Pruning for More Efficient Visual Adaptation
Straightforward Layer-wise Pruning for More Efficient Visual Adaptation
Ruizi Han
Jinglei Tang
58
1
0
19 Jul 2024
Always-Sparse Training by Growing Connections with Guided Stochastic Exploration
Always-Sparse Training by Growing Connections with Guided Stochastic Exploration
Mike Heddes
Narayan Srinivasa
T. Givargis
Alexandru Nicolau
91
0
0
12 Jan 2024
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained
  Transformers
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Transformers
Chen Liang
Haoming Jiang
Zheng Li
Xianfeng Tang
Bin Yin
Tuo Zhao
VLM
27
24
0
19 Feb 2023
One-shot Network Pruning at Initialization with Discriminative Image
  Patches
One-shot Network Pruning at Initialization with Discriminative Image Patches
Yinan Yang
Yu Wang
Yi Ji
Heng Qi
Jien Kato
VLM
28
4
0
13 Sep 2022
Winning the Lottery Ahead of Time: Efficient Early Network Pruning
Winning the Lottery Ahead of Time: Efficient Early Network Pruning
John Rachwan
Daniel Zügner
Bertrand Charpentier
Simon Geisler
Morgane Ayle
Stephan Günnemann
25
24
0
21 Jun 2022
Zeroth-Order Topological Insights into Iterative Magnitude Pruning
Zeroth-Order Topological Insights into Iterative Magnitude Pruning
Aishwarya H. Balwani
J. Krzyston
32
2
0
14 Jun 2022
PAC-Net: A Model Pruning Approach to Inductive Transfer Learning
PAC-Net: A Model Pruning Approach to Inductive Transfer Learning
Sanghoon Myung
I. Huh
Wonik Jang
Jae Myung Choe
Jisu Ryu
Daesin Kim
Kee-Eung Kim
C. Jeong
32
13
0
12 Jun 2022
Rare Gems: Finding Lottery Tickets at Initialization
Rare Gems: Finding Lottery Tickets at Initialization
Kartik K. Sreenivasan
Jy-yong Sohn
Liu Yang
Matthew Grinde
Alliot Nagle
Hongyi Wang
Eric P. Xing
Kangwook Lee
Dimitris Papailiopoulos
30
42
0
24 Feb 2022
No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for
  Training Large Transformer Models
No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for Training Large Transformer Models
Chen Liang
Haoming Jiang
Simiao Zuo
Pengcheng He
Xiaodong Liu
Jianfeng Gao
Weizhu Chen
T. Zhao
17
14
0
06 Feb 2022
Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win
Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win
Utku Evci
Yani Andrew Ioannou
Cem Keskin
Yann N. Dauphin
32
87
0
07 Oct 2020
Decomposable-Net: Scalable Low-Rank Compression for Neural Networks
Decomposable-Net: Scalable Low-Rank Compression for Neural Networks
A. Yaguchi
Taiji Suzuki
Shuhei Nitta
Y. Sakata
A. Tanizawa
19
9
0
29 Oct 2019
1