Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.10971
Cited By
v1
v2 (latest)
Machine-learning physics from unphysics: Finding deconfinement temperature in lattice Yang-Mills theories from outside the scaling window
23 September 2020
D. Boyda
M. N. Chernodub
N. Gerasimeniuk
V. Goy
S. Liubimov
A. Molochkov
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Machine-learning physics from unphysics: Finding deconfinement temperature in lattice Yang-Mills theories from outside the scaling window"
6 / 6 papers shown
Title
Sampling using
S
U
(
N
)
SU(N)
S
U
(
N
)
gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
84
129
0
12 Aug 2020
Extending machine learning classification capabilities with histogram reweighting
Dimitrios Bachtis
Gert Aarts
B. Lucini
50
21
0
29 Apr 2020
Equivariant flow-based sampling for lattice gauge theory
G. Kanwar
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
66
176
0
13 Mar 2020
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
105
219
0
26 Apr 2019
A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta
Marin Bukov
Ching-Hao Wang
A. G. Day
C. Richardson
Charles K. Fisher
D. Schwab
AI4CE
113
879
0
23 Mar 2018
Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
77
130
0
25 Nov 2017
1