ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.10670
  4. Cited By
On the proliferation of support vectors in high dimensions

On the proliferation of support vectors in high dimensions

22 September 2020
Daniel J. Hsu
Vidya Muthukumar
Ji Xu
ArXivPDFHTML

Papers citing "On the proliferation of support vectors in high dimensions"

9 / 9 papers shown
Title
Classifying Overlapping Gaussian Mixtures in High Dimensions: From
  Optimal Classifiers to Neural Nets
Classifying Overlapping Gaussian Mixtures in High Dimensions: From Optimal Classifiers to Neural Nets
Khen Cohen
Noam Levi
Yaron Oz
BDL
31
1
0
28 May 2024
Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models
Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models
David X. Wu
A. Sahai
26
2
0
23 Jun 2023
General Loss Functions Lead to (Approximate) Interpolation in High
  Dimensions
General Loss Functions Lead to (Approximate) Interpolation in High Dimensions
Kuo-Wei Lai
Vidya Muthukumar
21
5
0
13 Mar 2023
Tight bounds for maximum $\ell_1$-margin classifiers
Tight bounds for maximum ℓ1\ell_1ℓ1​-margin classifiers
Stefan Stojanovic
Konstantin Donhauser
Fanny Yang
35
0
0
07 Dec 2022
Interpolating Discriminant Functions in High-Dimensional Gaussian Latent
  Mixtures
Interpolating Discriminant Functions in High-Dimensional Gaussian Latent Mixtures
Xin Bing
M. Wegkamp
16
1
0
25 Oct 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
17
8
0
19 Sep 2022
Classification and Adversarial examples in an Overparameterized Linear
  Model: A Signal Processing Perspective
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
31
1
0
27 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of
  Overparameterized Machine Learning
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
Classification vs regression in overparameterized regimes: Does the loss
  function matter?
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
36
148
0
16 May 2020
1