ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09523
  4. Cited By
VirtualFlow: Decoupling Deep Learning Models from the Underlying
  Hardware

VirtualFlow: Decoupling Deep Learning Models from the Underlying Hardware

20 September 2020
Andrew Or
Haoyu Zhang
M. Freedman
ArXivPDFHTML

Papers citing "VirtualFlow: Decoupling Deep Learning Models from the Underlying Hardware"

4 / 4 papers shown
Title
HAP: SPMD DNN Training on Heterogeneous GPU Clusters with Automated
  Program Synthesis
HAP: SPMD DNN Training on Heterogeneous GPU Clusters with Automated Program Synthesis
Shiwei Zhang
Lansong Diao
Chuan Wu
Zongyan Cao
Siyu Wang
Wei Lin
43
12
0
11 Jan 2024
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,826
0
17 Sep 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,959
0
20 Apr 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
1