ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.08716
  4. Cited By
Federated Learning with Nesterov Accelerated Gradient

Federated Learning with Nesterov Accelerated Gradient

18 September 2020
Zhengjie Yang
Wei Bao
Dong Yuan
Nguyen H. Tran
Albert Y. Zomaya
    FedML
ArXivPDFHTML

Papers citing "Federated Learning with Nesterov Accelerated Gradient"

25 / 25 papers shown
Title
FedConv: A Learning-on-Model Paradigm for Heterogeneous Federated Clients
FedConv: A Learning-on-Model Paradigm for Heterogeneous Federated Clients
Leming Shen
Qiang Yang
Kaiyan Cui
Yuanqing Zheng
Xiao-Yong Wei
Jianwei Liu
Jinsong Han
FedML
248
11
0
28 Feb 2025
Dive into Deep Learning
Dive into Deep Learning
Aston Zhang
Zachary Chase Lipton
Mu Li
Alexander J. Smola
VLM
77
568
0
21 Jun 2021
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
125
218
0
08 Aug 2020
On the Convergence of Nesterov's Accelerated Gradient Method in
  Stochastic Settings
On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic Settings
Mahmoud Assran
Michael G. Rabbat
48
59
0
27 Feb 2020
Acceleration for Compressed Gradient Descent in Distributed and
  Federated Optimization
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedML
AI4CE
91
137
0
26 Feb 2020
Faster On-Device Training Using New Federated Momentum Algorithm
Faster On-Device Training Using New Federated Momentum Algorithm
Zhouyuan Huo
Qian Yang
Bin Gu
Heng-Chiao Huang
FedML
165
47
0
06 Feb 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
229
6,247
0
10 Dec 2019
Federated Learning with Differential Privacy: Algorithms and Performance
  Analysis
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
110
1,612
0
01 Nov 2019
Federated Learning over Wireless Networks: Convergence Analysis and
  Resource Allocation
Federated Learning over Wireless Networks: Convergence Analysis and Resource Allocation
Canh T. Dinh
N. H. Tran
Minh N. H. Nguyen
Choong Seon Hong
Wei Bao
Albert Y. Zomaya
Vincent Gramoli
FedML
104
334
0
29 Oct 2019
Accelerating Federated Learning via Momentum Gradient Descent
Accelerating Federated Learning via Momentum Gradient Descent
Wei Liu
Li Chen
Yunfei Chen
Wenyi Zhang
FedML
AI4CE
63
293
0
08 Oct 2019
SlowMo: Improving Communication-Efficient Distributed SGD with Slow
  Momentum
SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum
Jianyu Wang
Vinayak Tantia
Nicolas Ballas
Michael G. Rabbat
58
201
0
01 Oct 2019
FedPAQ: A Communication-Efficient Federated Learning Method with
  Periodic Averaging and Quantization
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
239
774
0
28 Sep 2019
Client-Edge-Cloud Hierarchical Federated Learning
Client-Edge-Cloud Hierarchical Federated Learning
Lumin Liu
Jun Zhang
S. H. Song
Khaled B. Letaief
FedML
79
742
0
16 May 2019
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
180
5,168
0
14 Dec 2018
A generic framework for privacy preserving deep learning
A generic framework for privacy preserving deep learning
Wenbo Guo
Yunzhe Tao
Morten Dahl
Sui Huang
Masashi Sugiyama
Daniel Rueckert
Lin Lin
FedML
102
438
0
09 Nov 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an
  Accelerated Perceptron
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark Schmidt
75
298
0
16 Oct 2018
A Unified Analysis of Stochastic Momentum Methods for Deep Learning
A Unified Analysis of Stochastic Momentum Methods for Deep Learning
Yan Yan
Tianbao Yang
Zhe Li
Qihang Lin
Yi Yang
38
119
0
30 Aug 2018
Cooperative SGD: A unified Framework for the Design and Analysis of
  Communication-Efficient SGD Algorithms
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
160
349
0
22 Aug 2018
Parallel Restarted SGD with Faster Convergence and Less Communication:
  Demystifying Why Model Averaging Works for Deep Learning
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
Hao Yu
Sen Yang
Shenghuo Zhu
MoMe
FedML
73
605
0
17 Jul 2018
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
242
1,706
0
14 Apr 2018
An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
202
6,184
0
15 Sep 2016
Unified Convergence Analysis of Stochastic Momentum Methods for Convex
  and Non-convex Optimization
Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization
Tianbao Yang
Qihang Lin
Zhe Li
59
122
0
12 Apr 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
392
17,453
0
17 Feb 2016
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
157
1,166
0
04 Mar 2015
Advances in Optimizing Recurrent Networks
Advances in Optimizing Recurrent Networks
Yoshua Bengio
Nicolas Boulanger-Lewandowski
Razvan Pascanu
ODL
100
522
0
04 Dec 2012
1