ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.08496
  4. Cited By
A Fast and Robust Method for Global Topological Functional Optimization
v1v2v3 (latest)

A Fast and Robust Method for Global Topological Functional Optimization

17 September 2020
Elchanan Solomon
Alexander Wagner
Paul Bendich
ArXiv (abs)PDFHTML

Papers citing "A Fast and Robust Method for Global Topological Functional Optimization"

7 / 7 papers shown
Title
Towards Scalable Topological Regularizers
Towards Scalable Topological Regularizers
Hiu-Tung Wong
Darrick Lee
Hong Yan
BDL
107
0
0
24 Jan 2025
Topology-Preserving Deep Image Segmentation
Topology-Preserving Deep Image Segmentation
Xiaoling Hu
Fuxin Li
Dimitris Samaras
Chao Chen
45
278
0
12 Jun 2019
Characterizing the Shape of Activation Space in Deep Neural Networks
Characterizing the Shape of Activation Space in Deep Neural Networks
Thomas Gebhart
Paul Schrater
Alan Hylton
AAML
38
7
0
28 Jan 2019
Neural Persistence: A Complexity Measure for Deep Neural Networks Using
  Algebraic Topology
Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology
Bastian Rieck
Matteo Togninalli
Christian Bock
Michael Moor
Max Horn
Thomas Gumbsch
Karsten Borgwardt
66
111
0
23 Dec 2018
A Topological Regularizer for Classifiers via Persistent Homology
A Topological Regularizer for Classifiers via Persistent Homology
Chao Chen
Xiuyan Ni
Qinxun Bai
Yusu Wang
74
112
0
27 Jun 2018
On Characterizing the Capacity of Neural Networks using Algebraic
  Topology
On Characterizing the Capacity of Neural Networks using Algebraic Topology
William H. Guss
Ruslan Salakhutdinov
73
90
0
13 Feb 2018
Sliced Wasserstein Kernel for Persistence Diagrams
Sliced Wasserstein Kernel for Persistence Diagrams
Mathieu Carrière
Marco Cuturi
S. Oudot
59
237
0
11 Jun 2017
1