Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.08295
Cited By
Neural Rough Differential Equations for Long Time Series
17 September 2020
James Morrill
C. Salvi
Patrick Kidger
James Foster
Terry Lyons
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Rough Differential Equations for Long Time Series"
29 / 29 papers shown
Title
Understanding and Mitigating Membership Inference Risks of Neural Ordinary Differential Equations
Sanghyun Hong
Fan Wu
A. Gruber
Kookjin Lee
42
0
0
12 Jan 2025
When are dynamical systems learned from time series data statistically accurate?
Jeongjin Park
Nicole Yang
Nisha Chandramoorthy
AI4TS
36
4
0
09 Nov 2024
S7: Selective and Simplified State Space Layers for Sequence Modeling
Taylan Soydan
Nikola Zubić
Nico Messikommer
Siddhartha Mishra
Davide Scaramuzza
44
4
0
04 Oct 2024
Oscillatory State-Space Models
T. Konstantin Rusch
Daniela Rus
AI4TS
144
5
0
04 Oct 2024
Efficient Training of Neural Stochastic Differential Equations by Matching Finite Dimensional Distributions
Jianxin Zhang
Josh Viktorov
Doosan Jung
Emily Pitler
DiffM
41
0
0
04 Oct 2024
Variational Sampling of Temporal Trajectories
Jurijs Nazarovs
Zhichun Huang
Xingjian Zhen
Sourav Pal
Rudrasis Chakraborty
Vikas Singh
24
0
0
18 Mar 2024
Theoretical Foundations of Deep Selective State-Space Models
Nicola Muca Cirone
Antonio Orvieto
Benjamin Walker
C. Salvi
Terry Lyons
Mamba
59
25
0
29 Feb 2024
Log Neural Controlled Differential Equations: The Lie Brackets Make a Difference
Benjamin Walker
Andrew D. McLeod
Tiexin Qin
Yichuan Cheng
Haoliang Li
Terry Lyons
44
5
0
28 Feb 2024
Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data
YongKyung Oh
Dongyoung Lim
Sungil Kim
AI4TS
43
12
0
22 Feb 2024
Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal Transformers
Kai Lagemann
C. Lagemann
Swarnava Mukherjee
36
2
0
21 Jun 2023
On the Generalization and Approximation Capacities of Neural Controlled Differential Equations
Linus Bleistein
Agathe Guilloux
40
1
0
26 May 2023
Non-adversarial training of Neural SDEs with signature kernel scores
Zacharia Issa
Blanka Horvath
M. Lemercier
C. Salvi
AI4TS
40
24
0
25 May 2023
Anamnesic Neural Differential Equations with Orthogonal Polynomial Projections
E. Brouwer
Rahul G. Krishnan
AI4TS
17
0
0
03 Mar 2023
A Brief Survey on the Approximation Theory for Sequence Modelling
Hao Jiang
Qianxiao Li
Zhong Li
Shida Wang
AI4TS
30
12
0
27 Feb 2023
Learning the Dynamics of Sparsely Observed Interacting Systems
Linus Bleistein
Adeline Fermanian
A. Jannot
Agathe Guilloux
46
5
0
27 Jan 2023
SeqLink: A Robust Neural-ODE Architecture for Modelling Partially Observed Time Series
Futoon M. Abushaqra
Hao Xue
Yongli Ren
Flora D. Salim
AI4TS
26
2
0
07 Dec 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
Liquid Structural State-Space Models
Ramin Hasani
Mathias Lechner
Tsun-Hsuan Wang
Makram Chahine
Alexander Amini
Daniela Rus
AI4TS
104
95
0
26 Sep 2022
Continuous-time Particle Filtering for Latent Stochastic Differential Equations
Ruizhi Deng
Greg Mori
Andreas M. Lehrmann
BDL
25
0
0
01 Sep 2022
Reachability Analysis of a General Class of Neural Ordinary Differential Equations
Diego Manzanas Lopez
Patrick Musau
Nathaniel P. Hamilton
Taylor T. Johnson
23
14
0
13 Jul 2022
On the Parameterization and Initialization of Diagonal State Space Models
Albert Gu
Ankit Gupta
Karan Goel
Christopher Ré
14
297
0
23 Jun 2022
E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations
Jongwan Kim
Dongjin Lee
Byunggook Na
Seongsik Park
Jeonghee Jo
Sung-Hoon Yoon
31
0
0
15 Jun 2022
Neural Differential Equations for Learning to Program Neural Nets Through Continuous Learning Rules
Kazuki Irie
Francesco Faccio
Jürgen Schmidhuber
AI4TS
33
11
0
03 Jun 2022
Path Development Network with Finite-dimensional Lie Group Representation
Han Lou
Siran Li
Hao Ni
16
7
0
02 Apr 2022
Learning the conditional law: signatures and conditional GANs in filtering and prediction of diffusion processes
Fabian Germ
Marc Sabate Vidales
DiffM
18
0
0
01 Apr 2022
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
52
20
0
31 Jan 2022
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
29
3
0
25 Nov 2021
Neural Controlled Differential Equations for Online Prediction Tasks
James Morrill
Patrick Kidger
Lingyi Yang
Terry Lyons
AI4TS
33
41
0
21 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
24
60
0
27 May 2021
1