Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.08063
Cited By
FLAME: Differentially Private Federated Learning in the Shuffle Model
17 September 2020
Ruixuan Liu
Yang Cao
Hong Chen
Ruoyang Guo
Masatoshi Yoshikawa
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FLAME: Differentially Private Federated Learning in the Shuffle Model"
17 / 17 papers shown
Title
Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning
Saber Malekmohammadi
Yaoliang Yu
Yang Cao
FedML
131
6
0
17 Feb 2025
FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection
Ruixuan Liu
Yang Cao
Masatoshi Yoshikawa
Hong Chen
FedML
41
108
0
24 Mar 2020
Pure Differentially Private Summation from Anonymous Messages
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
A. Velingker
FedML
82
46
0
05 Feb 2020
Separating Local & Shuffled Differential Privacy via Histograms
Victor Balcer
Albert Cheu
FedML
64
67
0
15 Nov 2019
Collecting and Analyzing Multidimensional Data with Local Differential Privacy
Ning Wang
Xiaokui Xiao
Yifan Yang
Jun Zhao
S. Hui
Hyejin Shin
Junbum Shin
Ge Yu
40
320
0
28 Jun 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
90
2,199
0
21 Jun 2019
Differentially Private Summation with Multi-Message Shuffling
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
52
47
0
20 Jun 2019
The Privacy Blanket of the Shuffle Model
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
61
237
0
07 Mar 2019
Federated Machine Learning: Concept and Applications
Qiang Yang
Yang Liu
Tianjian Chen
Yongxin Tong
FedML
70
2,306
0
13 Feb 2019
Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning
Milad Nasr
Reza Shokri
Amir Houmansadr
FedML
MIACV
AAML
48
250
0
03 Dec 2018
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
172
426
0
29 Nov 2018
Distributed Differential Privacy via Shuffling
Albert Cheu
Adam D. Smith
Jonathan R. Ullman
David Zeber
M. Zhilyaev
FedML
83
352
0
04 Aug 2018
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
77
385
0
04 Jul 2018
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
112
1,293
0
20 Dec 2017
Sparse Communication for Distributed Gradient Descent
Alham Fikri Aji
Kenneth Heafield
63
740
0
17 Apr 2017
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
111
1,399
0
24 Feb 2017
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
189
6,101
0
01 Jul 2016
1