ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.07778
  4. Cited By
Scaffold-constrained molecular generation
v1v2v3 (latest)

Scaffold-constrained molecular generation

15 September 2020
Maxime Langevin
H. Minoux
M. Levesque
M. Bianciotto
ArXiv (abs)PDFHTML

Papers citing "Scaffold-constrained molecular generation"

12 / 12 papers shown
Title
GraphXForm: Graph transformer for computer-aided molecular design
GraphXForm: Graph transformer for computer-aided molecular design
Jonathan Pirnay
Jan G. Rittig
Alexander B. Wolf
Martin Grohe
Jakob Burger
Alexander Mitsos
D. G. Grimm
AI4CE
123
1
0
03 Nov 2024
DeepScaffold: a comprehensive tool for scaffold-based de novo drug
  discovery using deep learning
DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning
Yibo Li
Jianxing Hu
Yanxing Wang
Jielong Zhou
L. Zhang
Zhenming Liu
67
94
0
20 Aug 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE3DV
76
328
0
11 Mar 2019
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
259
653
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
112
711
0
22 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
94
542
0
19 Oct 2018
MolGAN: An implicit generative model for small molecular graphs
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNNGAN
177
928
0
30 May 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
352
1,369
0
12 Feb 2018
Deep Reinforcement Learning for De-Novo Drug Design
Deep Reinforcement Learning for De-Novo Drug Design
Mariya Popova
Olexandr Isayev
Alexander Tropsha
88
1,031
0
29 Nov 2017
Molecular De Novo Design through Deep Reinforcement Learning
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
128
1,016
0
25 Apr 2017
Computer Assisted Composition with Recurrent Neural Networks
Computer Assisted Composition with Recurrent Neural Networks
Christian J. Walder
Dongwoo Kim
34
7
0
01 Dec 2016
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
171
2,939
0
07 Oct 2016
1