Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.07330
Cited By
Training neural networks under physical constraints using a stochastic augmented Lagrangian approach
15 September 2020
A. Dener
M. Miller
R. Churchill
T. Munson
Choong-Seock Chang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Training neural networks under physical constraints using a stochastic augmented Lagrangian approach"
16 / 16 papers shown
Title
Stochastic Smoothed Primal-Dual Algorithms for Nonconvex Optimization with Linear Inequality Constraints
Ruichuan Huang
Jiawei Zhang
Ahmet Alacaoglu
47
0
0
10 Apr 2025
PINNverse: Accurate parameter estimation in differential equations from noisy data with constrained physics-informed neural networks
Marius Almanstötter
Roman Vetter
Dagmar Iber
PINN
32
2
0
07 Apr 2025
TL-PCA: Transfer Learning of Principal Component Analysis
Sharon Hendy
Yehuda Dar
163
1
0
14 Oct 2024
Physics-Informed Neural Networks with Trust-Region Sequential Quadratic Programming
Xiaoran Cheng
Sen Na
PINN
37
1
0
16 Sep 2024
Physics-Informed Neural Networks with Hard Linear Equality Constraints
Hao Chen
Gonzalo E. Constante-Flores
Canzhou Li
PINN
21
11
0
11 Feb 2024
Complexity of Single Loop Algorithms for Nonlinear Programming with Stochastic Objective and Constraints
Ahmet Alacaoglu
Stephen J. Wright
25
10
0
01 Nov 2023
Achieving Constraints in Neural Networks: A Stochastic Augmented Lagrangian Approach
Diogo Mateus Lavado
Cláudia Soares
Alessandra Micheletti
24
1
0
25 Oct 2023
An adaptive augmented Lagrangian method for training physics and equality constrained artificial neural networks
S. Basir
Inanc Senocak
PINN
19
5
0
08 Jun 2023
Invariant preservation in machine learned PDE solvers via error correction
N. McGreivy
Ammar Hakim
AI4CE
PINN
34
8
0
28 Mar 2023
Guaranteed Conformance of Neurosymbolic Models to Natural Constraints
Kaustubh Sridhar
Souradeep Dutta
James Weimer
Insup Lee
30
7
0
02 Dec 2022
NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning
Buyun Liang
Tim Mitchell
Ju Sun
OOD
18
7
0
03 Oct 2022
Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying Non-Autonomous Dynamical Systems
Oliver Schön
Ricarda-Samantha Götte
Julia Timmermann
AI4CE
24
5
0
27 Apr 2022
Adjoint-Matching Neural Network Surrogates for Fast 4D-Var Data Assimilation
Austin Chennault
Andrey A. Popov
Amit N. Subrahmanya
R. Cooper
Ali Haisam Muhammad Rafid
Anuj Karpatne
Adrian Sandu
20
10
0
16 Nov 2021
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
34
68
0
30 Sep 2021
Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
Franck Djeumou
Cyrus Neary
Eric Goubault
S. Putot
Ufuk Topcu
PINN
AI4CE
47
69
0
14 Sep 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
50
495
0
09 Feb 2021
1