ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.05683
  4. Cited By
MACE: A Flexible Framework for Membership Privacy Estimation in
  Generative Models

MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models

11 September 2020
Yixi Xu
Soumendu Sundar Mukherjee
Xiyang Liu
Shruti Tople
Rahul Dodhia
J. L. Ferres
    MIACV
ArXivPDFHTML

Papers citing "MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models"

5 / 5 papers shown
Title
SoK: Privacy-Preserving Data Synthesis
SoK: Privacy-Preserving Data Synthesis
Yuzheng Hu
Fan Wu
Yue Liu
Yunhui Long
Gonzalo Munilla Garrido
Chang Ge
Bolin Ding
David A. Forsyth
Bo-wen Li
D. Song
60
26
0
05 Jul 2023
Machine Learning for Synthetic Data Generation: A Review
Machine Learning for Synthetic Data Generation: A Review
Ying-Cheng Lu
Minjie Shen
Huazheng Wang
Xiao Wang
Capucine Van Rechem
Tianfan Fu
Wenqi Wei
SyDa
42
140
0
08 Feb 2023
LTU Attacker for Membership Inference
LTU Attacker for Membership Inference
Joseph Pedersen
Rafael Munoz-Gómez
Jiangnan Huang
Haozhe Sun
Wei-Wei Tu
Isabelle M Guyon
33
1
0
04 Feb 2022
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for
  Machine Learning
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning
Vasisht Duddu
S. Szyller
Nadarajah Asokan
32
12
0
04 Dec 2021
Reducing bias and increasing utility by federated generative modeling of
  medical images using a centralized adversary
Reducing bias and increasing utility by federated generative modeling of medical images using a centralized adversary
Jean-Francois Rajotte
Soumendu Sundar Mukherjee
Caleb Robinson
Anthony Ortiz
Christopher West
J. L. Ferres
R. Ng
FedML
MedIm
130
40
0
18 Jan 2021
1