ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.05647
  4. Cited By
Compressed Deep Networks: Goodbye SVD, Hello Robust Low-Rank
  Approximation

Compressed Deep Networks: Goodbye SVD, Hello Robust Low-Rank Approximation

11 September 2020
M. Tukan
Alaa Maalouf
Matan Weksler
Dan Feldman
ArXivPDFHTML

Papers citing "Compressed Deep Networks: Goodbye SVD, Hello Robust Low-Rank Approximation"

4 / 4 papers shown
Title
Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching: With Insights into Other Permutation Search Methods
Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching: With Insights into Other Permutation Search Methods
Akira Ito
Masanori Yamada
Atsutoshi Kumagai
MoMe
64
5
0
06 Feb 2024
BERMo: What can BERT learn from ELMo?
BERMo: What can BERT learn from ELMo?
Sangamesh Kodge
Kaushik Roy
38
3
0
18 Oct 2021
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT
Sheng Shen
Zhen Dong
Jiayu Ye
Linjian Ma
Z. Yao
A. Gholami
Michael W. Mahoney
Kurt Keutzer
MQ
233
576
0
12 Sep 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
299
6,984
0
20 Apr 2018
1