ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.05639
15
0
v1v2 (latest)

Solving Arithmetic Word Problems by Scoring Equations with Recursive Neural Networks

11 September 2020
Klim Zaporojets
Giannis Bekoulis
Johannes Deleu
Thomas Demeester
Chris Develder
    AIMat
ArXiv (abs)PDFHTML
Abstract

Solving arithmetic word problems is a cornerstone task in assessing language understanding and reasoning capabilities in NLP systems. Recent works use automatic extraction and ranking of candidate solution equations providing the answer to arithmetic word problems. In this work, we explore novel approaches to score such candidate solution equations using tree-structured recursive neural network (Tree-RNN) configurations. The advantage of this Tree-RNN approach over using more established sequential representations, is that it can naturally capture the structure of the equations. Our proposed method consists of transforming the mathematical expression of the equation into an expression tree. Further, we encode this tree into a Tree-RNN by using different Tree-LSTM architectures. Experimental results show that our proposed method (i) improves overall performance with more than 3% accuracy points compared to previous state-of-the-art, and with over 15% points on a subset of problems that require more complex reasoning, and (ii) outperforms sequential LSTMs by 4% accuracy points on such more complex problems.

View on arXiv
Comments on this paper