ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.04743
  4. Cited By
TripleTree: A Versatile Interpretable Representation of Black Box Agents
  and their Environments
v1v2 (latest)

TripleTree: A Versatile Interpretable Representation of Black Box Agents and their Environments

10 September 2020
Tom Bewley
J. Lawry
    FAtt
ArXiv (abs)PDFHTML

Papers citing "TripleTree: A Versatile Interpretable Representation of Black Box Agents and their Environments"

12 / 12 papers shown
Title
On Generating Explanations for Reinforcement Learning Policies: An Empirical Study
On Generating Explanations for Reinforcement Learning Policies: An Empirical Study
Mikihisa Yuasa
Huy T. Tran
R. Sreenivas
FAttLRM
120
1
0
29 Sep 2023
Modelling Agent Policies with Interpretable Imitation Learning
Modelling Agent Policies with Interpretable Imitation Learning
Tom Bewley
J. Lawry
Arthur G. Richards
42
8
0
19 Jun 2020
NBDT: Neural-Backed Decision Trees
NBDT: Neural-Backed Decision Trees
Alvin Wan
Lisa Dunlap
Daniel Ho
Jihan Yin
Scott Lee
Henry Jin
Suzanne Petryk
Sarah Adel Bargal
Joseph E. Gonzalez
58
104
0
01 Apr 2020
FACE: Feasible and Actionable Counterfactual Explanations
FACE: Feasible and Actionable Counterfactual Explanations
Rafael Poyiadzi
Kacper Sokol
Raúl Santos-Rodríguez
T. D. Bie
Peter A. Flach
71
369
0
20 Sep 2019
Conservative Q-Improvement: Reinforcement Learning for an Interpretable
  Decision-Tree Policy
Conservative Q-Improvement: Reinforcement Learning for an Interpretable Decision-Tree Policy
Aaron M. Roth
Nicholay Topin
Pooyan Jamshidi
Manuela Veloso
OffRL
59
48
0
02 Jul 2019
Learning Finite State Representations of Recurrent Policy Networks
Learning Finite State Representations of Recurrent Policy Networks
Anurag Koul
S. Greydanus
Alan Fern
43
88
0
29 Nov 2018
Toward Interpretable Deep Reinforcement Learning with Linear Model
  U-Trees
Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees
Guiliang Liu
Oliver Schulte
Wang Zhu
Qingcan Li
AI4CE
42
135
0
16 Jul 2018
Verifiable Reinforcement Learning via Policy Extraction
Verifiable Reinforcement Learning via Policy Extraction
Osbert Bastani
Yewen Pu
Armando Solar-Lezama
OffRL
129
337
0
22 May 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
112
2,354
0
01 Nov 2017
Explainable Artificial Intelligence: Understanding, Visualizing and
  Interpreting Deep Learning Models
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAIVLM
75
1,190
0
28 Aug 2017
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRLODL
223
5,077
0
05 Jun 2016
A Notation for Markov Decision Processes
A Notation for Markov Decision Processes
Philip S. Thomas
Billy Okal
139
17
0
30 Dec 2015
1