ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.04278
  4. Cited By
DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
  Continuous Control

DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in Continuous Control

9 September 2020
V. M. Alvarez
R. Rosca
Cristian G. Falcutescu
ArXivPDFHTML

Papers citing "DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in Continuous Control"

6 / 6 papers shown
Title
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
Christoph Jürgen Hemmer
Daniel Durstewitz
AI4TS
SyDa
AI4CE
17
0
0
19 May 2025
On the Forward Invariance of Neural ODEs
On the Forward Invariance of Neural ODEs
Wei Xiao
Tsun-Hsuan Wang
Ramin Hasani
Mathias Lechner
Yutong Ban
Chuang Gan
Daniela Rus
44
11
0
10 Oct 2022
Neural Ordinary Differential Equations for Nonlinear System
  Identification
Neural Ordinary Differential Equations for Nonlinear System Identification
Aowabin Rahman
Ján Drgoňa
Aaron Tuor
J. Strube
30
22
0
28 Feb 2022
Myriad: a real-world testbed to bridge trajectory optimization and deep
  learning
Myriad: a real-world testbed to bridge trajectory optimization and deep learning
Nikolaus H. R. Howe
Simon Dufort-Labbé
Nitarshan Rajkumar
Pierre-Luc Bacon
32
5
0
22 Feb 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
28
40
0
10 Feb 2022
Learning Contact Dynamics using Physically Structured Neural Networks
Learning Contact Dynamics using Physically Structured Neural Networks
Andreas Hochlehnert
Alexander Terenin
Steindór Sæmundsson
M. Deisenroth
19
16
0
22 Feb 2021
1