ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.03730
  4. Cited By
Large-scale Neural Solvers for Partial Differential Equations

Large-scale Neural Solvers for Partial Differential Equations

8 September 2020
Patrick Stiller
Friedrich Bethke
M. Böhme
R. Pausch
Sunna Torge
A. Debus
J. Vorberger
Michael Bussmann
Nico Hoffmann
    AI4CE
ArXivPDFHTML

Papers citing "Large-scale Neural Solvers for Partial Differential Equations"

6 / 6 papers shown
Title
Machine learning and domain decomposition methods -- a survey
Machine learning and domain decomposition methods -- a survey
A. Klawonn
M. Lanser
J. Weber
AI4CE
24
7
0
21 Dec 2023
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Andreas Döpp
C. Eberle
S. Howard
F. Irshad
Jinpu Lin
M. Streeter
AI4CE
32
63
0
30 Nov 2022
Continual learning autoencoder training for a particle-in-cell
  simulation via streaming
Continual learning autoencoder training for a particle-in-cell simulation via streaming
Patrick Stiller
Varun Makdani
Franz Pöschel
R. Pausch
A. Debus
Michael Bussmann
Nico Hoffmann
AI4CE
19
3
0
09 Nov 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,180
0
14 Jan 2022
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
  domain decomposition approach for solving differential equations
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
48
210
0
16 Jul 2021
Invertible Surrogate Models: Joint surrogate modelling and
  reconstruction of Laser-Wakefield Acceleration by invertible neural networks
Invertible Surrogate Models: Joint surrogate modelling and reconstruction of Laser-Wakefield Acceleration by invertible neural networks
Friedrich Bethke
R. Pausch
Patrick Stiller
A. Debus
Michael Bussmann
Nico Hoffmann
27
2
0
01 Jun 2021
1