Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.03488
Cited By
Adversarial Attack on Large Scale Graph
8 September 2020
Jintang Li
Tao Xie
Liang Chen
Fenfang Xie
Xiangnan He
Zibin Zheng
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Attack on Large Scale Graph"
17 / 17 papers shown
Title
Quantifying the Noise of Structural Perturbations on Graph Adversarial Attacks
Junyuan Fang
Han Yang
Haixian Wen
Jiajing Wu
Zibin Zheng
Chi K. Tse
AAML
51
0
0
29 Apr 2025
Revisiting Robustness in Graph Machine Learning
Lukas Gosch
Daniel Sturm
Simon Geisler
Stephan Günnemann
AAML
OOD
77
22
0
01 May 2023
Are Defenses for Graph Neural Networks Robust?
Felix Mujkanovic
Simon Geisler
Stephan Günnemann
Aleksandar Bojchevski
OOD
AAML
21
57
0
31 Jan 2023
Spectral Adversarial Training for Robust Graph Neural Network
Jintang Li
Jiaying Peng
Liang Chen
Zibin Zheng
Tingting Liang
Qing Ling
AAML
OOD
33
19
0
20 Nov 2022
Motif-Backdoor: Rethinking the Backdoor Attack on Graph Neural Networks via Motifs
Haibin Zheng
Haiyang Xiong
Jinyin Chen
Hao-Shang Ma
Guohan Huang
52
28
0
25 Oct 2022
GANI: Global Attacks on Graph Neural Networks via Imperceptible Node Injections
Junyuan Fang
Haixian Wen
Jiajing Wu
Qi Xuan
Zibin Zheng
Chi K. Tse
AAML
52
22
0
23 Oct 2022
Empowering Graph Representation Learning with Test-Time Graph Transformation
Wei Jin
Tong Zhao
Jiayu Ding
Yozen Liu
Jiliang Tang
Neil Shah
OOD
86
62
0
07 Oct 2022
Model Inversion Attacks against Graph Neural Networks
Zaixin Zhang
Qi Liu
Zhenya Huang
Hao Wang
Cheekong Lee
Enhong
AAML
28
35
0
16 Sep 2022
Adversarial contamination of networks in the setting of vertex nomination: a new trimming method
Sheyda Peyman
M. Tang
V. Lyzinski
AAML
35
0
0
20 Aug 2022
Strategic Classification with Graph Neural Networks
Itay Eilat
Ben Finkelshtein
Chaim Baskin
Nir Rosenfeld
39
12
0
31 May 2022
GUARD: Graph Universal Adversarial Defense
Jintang Li
Jie Liao
Ruofan Wu
Liang Chen
Zibin Zheng
Jiawang Dan
Changhua Meng
Weiqiang Wang
AAML
28
8
0
20 Apr 2022
Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack
Jintang Li
Bingzhe Wu
Chengbin Hou
Guoji Fu
Yatao Bian
Liang Chen
Junzhou Huang
Zibin Zheng
OOD
AAML
42
6
0
15 Feb 2022
Robustness of Graph Neural Networks at Scale
Simon Geisler
Tobias Schmidt
Hakan cSirin
Daniel Zügner
Aleksandar Bojchevski
Stephan Günnemann
AAML
30
126
0
26 Oct 2021
Graph-Fraudster: Adversarial Attacks on Graph Neural Network Based Vertical Federated Learning
Jinyin Chen
Guohan Huang
Haibin Zheng
Shanqing Yu
Wenrong Jiang
Chen Cui
AAML
FedML
82
32
0
13 Oct 2021
A BIC-based Mixture Model Defense against Data Poisoning Attacks on Classifiers
Xi Li
David J. Miller
Zhen Xiang
G. Kesidis
AAML
16
0
0
28 May 2021
Graphfool: Targeted Label Adversarial Attack on Graph Embedding
Jinyin Chen
Xiang Lin
Dunjie Zhang
Haibin Zheng
Guohan Huang
Hui Xiong
Xiang Lin
AAML
56
3
0
24 Feb 2021
GraphAttacker: A General Multi-Task GraphAttack Framework
Jinyin Chen
Dunjie Zhang
Zhaoyan Ming
Kejie Huang
Wenrong Jiang
Chen Cui
AAML
41
14
0
18 Jan 2021
1