ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.02622
  4. Cited By
A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale
  Highway Environments

A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments

6 September 2020
Shibo Zhao
Zheng Fang
HaoLai Li
Sebastian Scherer
ArXivPDFHTML

Papers citing "A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments"

5 / 5 papers shown
Title
Robust Dense Mapping for Large-Scale Dynamic Environments
Robust Dense Mapping for Large-Scale Dynamic Environments
Ioan Andrei Bârsan
Peidong Liu
Marc Pollefeys
Andreas Geiger
3DV
38
124
0
07 May 2019
LIMO: Lidar-Monocular Visual Odometry
LIMO: Lidar-Monocular Visual Odometry
Johannes Grater
A. Wilczynski
Martin Lauer
62
185
0
19 Jul 2018
IMLS-SLAM: scan-to-model matching based on 3D data
IMLS-SLAM: scan-to-model matching based on 3D data
Jean-Emmanuel Deschaud
48
318
0
23 Feb 2018
Quaternion kinematics for the error-state Kalman filter
Quaternion kinematics for the error-state Kalman filter
J. Solà
48
491
0
03 Nov 2017
Co-Fusion: Real-time Segmentation, Tracking and Fusion of Multiple
  Objects
Co-Fusion: Real-time Segmentation, Tracking and Fusion of Multiple Objects
Martin Rünz
Lourdes Agapito
VOT
60
210
0
20 Jun 2017
1