ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.02557
  4. Cited By
FLFE: A Communication-Efficient and Privacy-Preserving Federated Feature
  Engineering Framework

FLFE: A Communication-Efficient and Privacy-Preserving Federated Feature Engineering Framework

5 September 2020
Pei Fang
Zhendong Cai
Hui Chen
Qingjiang Shi
ArXivPDFHTML

Papers citing "FLFE: A Communication-Efficient and Privacy-Preserving Federated Feature Engineering Framework"

3 / 3 papers shown
Title
Knowledge Augmentation in Federation: Rethinking What Collaborative Learning Can Bring Back to Decentralized Data
Wentai Wu
Ligang He
Saiqin Long
Ahmed M. Abdelmoniem
Yingliang Wu
Rui Mao
67
0
0
05 Mar 2025
Federated Automated Feature Engineering
Federated Automated Feature Engineering
Tom Overman
Diego Klabjan
FedML
100
1
0
05 Dec 2024
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
270
7,640
0
03 Jul 2012
1