ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.02327
  4. Cited By
OnsagerNet: Learning Stable and Interpretable Dynamics using a
  Generalized Onsager Principle

OnsagerNet: Learning Stable and Interpretable Dynamics using a Generalized Onsager Principle

6 September 2020
Haijun Yu
Xinyuan Tian
Weinan E
Qianxiao Li
    AI4CE
ArXivPDFHTML

Papers citing "OnsagerNet: Learning Stable and Interpretable Dynamics using a Generalized Onsager Principle"

7 / 7 papers shown
Title
VPNets: Volume-preserving neural networks for learning source-free
  dynamics
VPNets: Volume-preserving neural networks for learning source-free dynamics
Aiqing Zhu
Beibei Zhu
Jiawei Zhang
Yifa Tang
Jian-Dong Liu
31
3
0
29 Apr 2022
Computing the Invariant Distribution of Randomly Perturbed Dynamical
  Systems Using Deep Learning
Computing the Invariant Distribution of Randomly Perturbed Dynamical Systems Using Deep Learning
Bo Lin
Qianxiao Li
W. Ren
21
8
0
22 Oct 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for
  Data-driven Modeling
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
32
25
0
11 Sep 2021
A Data Driven Method for Computing Quasipotentials
A Data Driven Method for Computing Quasipotentials
Bo Lin
Qianxiao Li
W. Ren
16
13
0
13 Dec 2020
Learning Thermodynamically Stable and Galilean Invariant Partial
  Differential Equations for Non-equilibrium Flows
Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-equilibrium Flows
Juntao Huang
Zhiting Ma
Y. Zhou
W. Yong
AI4CE
35
16
0
28 Sep 2020
Discovery of Governing Equations with Recursive Deep Neural Networks
Discovery of Governing Equations with Recursive Deep Neural Networks
Jia Zhao
Jarrod Mau
PINN
27
6
0
24 Sep 2020
Combining Machine Learning with Knowledge-Based Modeling for Scalable
  Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
  Systems
Combining Machine Learning with Knowledge-Based Modeling for Scalable Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal Systems
Alexander Wikner
Jaideep Pathak
Brian Hunt
M. Girvan
T. Arcomano
I. Szunyogh
Andrew Pomerance
Edward Ott
AI4CE
62
70
0
10 Feb 2020
1