ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.01672
  4. Cited By
Yet Meta Learning Can Adapt Fast, It Can Also Break Easily

Yet Meta Learning Can Adapt Fast, It Can Also Break Easily

2 September 2020
Han Xu
Yaxin Li
Xiaorui Liu
Hui Liu
Jiliang Tang
    AAML
ArXivPDFHTML

Papers citing "Yet Meta Learning Can Adapt Fast, It Can Also Break Easily"

4 / 4 papers shown
Title
Rethinking the Number of Shots in Robust Model-Agnostic Meta-Learning
Rethinking the Number of Shots in Robust Model-Agnostic Meta-Learning
Xiaoyue Duan
Guoliang Kang
Runqi Wang
Shumin Han
Shenjun Xue
Tian Wang
Baochang Zhang
29
2
0
28 Nov 2022
On Fast Adversarial Robustness Adaptation in Model-Agnostic
  Meta-Learning
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
21
46
0
20 Feb 2021
Delta-encoder: an effective sample synthesis method for few-shot object
  recognition
Delta-encoder: an effective sample synthesis method for few-shot object recognition
Eli Schwartz
Leonid Karlinsky
J. Shtok
Sivan Harary
Mattias Marder
Rogerio Feris
Abhishek Kumar
Raja Giryes
A. Bronstein
192
351
0
12 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
362
11,684
0
09 Mar 2017
1