Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.01672
Cited By
Yet Meta Learning Can Adapt Fast, It Can Also Break Easily
2 September 2020
Han Xu
Yaxin Li
Xiaorui Liu
Hui Liu
Jiliang Tang
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Yet Meta Learning Can Adapt Fast, It Can Also Break Easily"
4 / 4 papers shown
Title
Rethinking the Number of Shots in Robust Model-Agnostic Meta-Learning
Xiaoyue Duan
Guoliang Kang
Runqi Wang
Shumin Han
Shenjun Xue
Tian Wang
Baochang Zhang
29
2
0
28 Nov 2022
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
21
46
0
20 Feb 2021
Delta-encoder: an effective sample synthesis method for few-shot object recognition
Eli Schwartz
Leonid Karlinsky
J. Shtok
Sivan Harary
Mattias Marder
Rogerio Feris
Abhishek Kumar
Raja Giryes
A. Bronstein
192
351
0
12 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
362
11,684
0
09 Mar 2017
1