ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.01502
  4. Cited By
DRLE: Decentralized Reinforcement Learning at the Edge for Traffic Light
  Control in the IoV
v1v2 (latest)

DRLE: Decentralized Reinforcement Learning at the Edge for Traffic Light Control in the IoV

3 September 2020
Pengyuan Zhou
Xianfu Chen
Zhi Liu
Tristan Braud
Pan Hui
J. Kangasharju
ArXiv (abs)PDFHTML

Papers citing "DRLE: Decentralized Reinforcement Learning at the Edge for Traffic Light Control in the IoV"

10 / 10 papers shown
Title
Distributed Vehicular Computing at the Dawn of 5G: a Survey
Distributed Vehicular Computing at the Dawn of 5G: a Survey
A. Alhilal
Benjamin Finley
Tristan Braud
Dongzhe Su
Pan Hui
40
16
0
20 Jan 2020
Multi-Agent Deep Reinforcement Learning for Large-scale Traffic Signal
  Control
Multi-Agent Deep Reinforcement Learning for Large-scale Traffic Signal Control
Tianshu Chu
Jie Wang
Lara Codecà
Zhaojian Li
44
672
0
11 Mar 2019
Simple random search provides a competitive approach to reinforcement
  learning
Simple random search provides a competitive approach to reinforcement learning
Horia Mania
Aurelia Guy
Benjamin Recht
62
316
0
19 Mar 2018
RLlib: Abstractions for Distributed Reinforcement Learning
RLlib: Abstractions for Distributed Reinforcement Learning
Eric Liang
Richard Liaw
Philipp Moritz
Robert Nishihara
Roy Fox
Ken Goldberg
Joseph E. Gonzalez
Michael I. Jordan
Ion Stoica
OffRLAI4CE
66
175
0
26 Dec 2017
Ray: A Distributed Framework for Emerging AI Applications
Ray: A Distributed Framework for Emerging AI Applications
Philipp Moritz
Robert Nishihara
Stephanie Wang
Alexey Tumanov
Richard Liaw
...
Melih Elibol
Zongheng Yang
William Paul
Michael I. Jordan
Ion Stoica
GNN
105
1,266
0
16 Dec 2017
Rainbow: Combining Improvements in Deep Reinforcement Learning
Rainbow: Combining Improvements in Deep Reinforcement Learning
Matteo Hessel
Joseph Modayil
H. V. Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Dan Horgan
Bilal Piot
M. G. Azar
David Silver
OffRL
107
2,268
0
06 Oct 2017
A Distributional Perspective on Reinforcement Learning
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
98
1,506
0
21 Jul 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
526
19,237
0
20 Jul 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
104
1,541
0
10 Mar 2017
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
127
12,265
0
19 Dec 2013
1